An investigation into the prokaryotic diversity of UK forest soils using high throughput sequencing

DSpace/Manakin Repository

Open Research Exeter (ORE)

An investigation into the prokaryotic diversity of UK forest soils using high throughput sequencing

Please use this identifier to cite or link to this item:


Title: An investigation into the prokaryotic diversity of UK forest soils using high throughput sequencing
Author: Hudson, Theresa Mary
Advisor: Richards, Thomas
Publisher: University of Exeter
Date Issued: 2010-09-30
Abstract: The development of high throughput sequencing techniques has allowed for greater investigations into environmental microbial communities in this thesis. Using the Illumina Solexa sequencing technology we investigated prokaryote communities in replicate soil samples from four soil types: both the organic and mineral layers of two UK forest sites, an oak stand and a Corsican pine stand. Prokaryote diversity was assessed using the 16S SSU rRNA encoding genes from DNA and rRNA (reverse transcribed to cDNA) extracted simultaneously from the same sample. From a total of > 4.5 million sequence reads, only 0.6 % of the reads overlapped between RNA and DNA samples. Marked differences were seen between the distribution of Phyla from RNA and DNA. The community structure showed a small number of Operational Taxonomic Units (OTUs) having high relative abundance and many OTUs being detected in low or single numbers, representing a ‘rare biosphere’ community composition. Taxonomy of RNA was further described at phylum and family level. Only 30 % of OTUs could be assigned taxonomy at phylum level and, of those, only 46 % at family or genus level (bootstrap support >70). At phylum level, the RNA samples were homogeneous across all soil types, dominated by β/γ-Proteobacteria, α-Proteobacteria and Acidobacteria. 7 phyla were detected in all samples and rarely detected phyla showed high diversity between samples. At family level the samples were much more heterogeneous, different phyla showed different family taxonomic distribution patterns, with Firmicutes and Actinobacteria the most diverse. We used principal component analysis comparing 27 environmental variables against the Shannon-Weaver diversity index of each soil sample. Each soil type was seen to have its own unique fingerprint of diversity. pH was observed as the most influential parameter to diversity, and C:N ratio, zirconium and zinc levels also considered important. 24 of the 27 parameters explained the majority of the variation in the diversity of the soil samples, concluding that prokaryote diversity in these soils is determined by complex interactions between a wide range of environmental conditions. Together this demonstrates that the prokaryote soil community are extremely diverse and dynamic.
Type: Thesis or dissertation
Funders/Sponsor: NERC and Forest Research

Please note: Before reusing this item please check the rights under which it has been made available. Some items are restricted to non-commercial use. Please cite the published version where applicable.

Files in this item

Files Size Format View
HudsonT.pdf 3.214Mb PDF View/Open
HudsonT_fm.pdf 291.3Kb PDF View/Open

This item appears in the following Collection(s)


My Account

Local Links