Show simple item record

dc.contributor.authorLowe, Elisabeth Clareen_GB
dc.date.accessioned2008-11-06T10:47:22Zen_GB
dc.date.accessioned2011-01-25T17:21:42Zen_GB
dc.date.accessioned2013-03-21T12:49:36Z
dc.date.issued2008-07-17en_GB
dc.description.abstractThe Gram negative bacterium Thauera selenatis is able to respire with selenate as the sole terminal electron acceptor, utilising a periplasmic selenate reductase enzyme to reduce selenate to selenite. Previous characterisation of this enzyme has shown that it is a heterotrimeric molybdo-enzyme (SerABC) of the dimethylsulfoxide reductase family, containing a Mo-bis molybdopterin guanine dinucleotide co-factor, Fe-S clusters and a b-type haem (Schroder et al., 1997, J Biol Chem, 272: 23765-68, Dridge et al., 2007, Biochem J, 408: 19-28). In order to elucidate the electron transport pathway to selenate reductase, and how it can generate a proton motive force, detailed study was required. Firstly, the redox potential of the b-haem of SerC was determined by optical redox titration to be +234 mV. The serC gene was cloned and expressed heterologously in E. coli, but the protein was incorrectly folded into inclusion bodies, and attempts to refold and reconstitute SerC with haem were unsuccessful. A profile of c-type cytochromes in T. selenatis was undertaken, and characterisation of a number of cytochromes was carried out. Two cytochromes were purified, cytc7 and cytc4, and cytc4 was shown to be able to donate electrons to SerABC in vitro. Protein sequence was obtained by N-terminal sequencing and LC-MS/MS, and assigned cytc4 to the cytochrome c4 family of dihaem cytochromes. Redox potentiometry combined with UV-visible and electron paramagnetic spectroscopy showed that cytc4 is a dihaem cytochrome with a redox potential of +282 mV and both haems are predicted to have His-Met ligation. To investigate the role of membrane bound cytochromes in selenate respiration, PCR with degenerate primers amplified a partial gene coding for quinol: cytochrome c oxidoreductase (QCR). A microplate growth method was developed to monitor growth of T. selenatis under reproducible conditions, and used to analyse the effect of respiratory chain inhibitors on growth under different conditions. Aerobic metabolism was unaffected by QCR inhibitors, while nitrite reduction was totally inhibited, linking nitrite reduction to the generation of a proton motive force by the QCR. The QCR inhibitor myxothiazol partially inhibited selenate respiration, showing that some electron flux is via the QCR, but total inhibition of selenate respiration was achieved by combining myxothiazol with the more general inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO). These data suggest that electron transfer to selenate reductase occurs via a branched pathway, in which one route is inhibited by myxothiazol and the other by HQNO. Electron transfer via a QCR and a dihaem cytochrome c4 is a novel route for a member of the dimethylsulfoxide reductase family of molybdo-enzymes.en_GB
dc.identifier.urihttp://hdl.handle.net/10036/40333en_GB
dc.language.isoenen_GB
dc.publisherUniversity of Exeteren_GB
dc.titleResolving electron transport in the selenate respiring bacterium Thauera selenatisen_GB
dc.typeThesis or dissertationen_GB
dc.date.available2008-11-06T10:47:22Zen_GB
dc.date.available2011-01-25T17:21:42Zen_GB
dc.date.available2013-03-21T12:49:36Z
dc.contributor.advisorButler, Clive Sen_GB
dc.publisher.departmentBiosciencesen_GB
dc.type.degreetitlePhD in Biological Sciencesen_GB
dc.type.qualificationlevelDoctoralen_GB
dc.type.qualificationnamePhDen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record