Untitled
dc.contributor.author | Cooper, Barrie | |
dc.date.accessioned | 2010-04-14T11:38:22Z | en_GB |
dc.date.accessioned | 2017-03-31T15:05:10Z | |
dc.date.issued | 2010-04-14T11:38:22Z | en_GB |
dc.identifier.uri | http://hdl.handle.net/10582/187 | en_GB |
dc.type | Learning Object | en_GB |
dc.date.available | 2010-04-14T11:38:22Z | en_GB |
dc.date.available | 2017-03-31T15:05:10Z | |
dcterms.abstract | This module aims to provide an introduction to axiomatic reasoning in mathematics, particularly in relation to the perspective adopted by modern algebra. Properties of the standard number systems will be developed. The abstract definition of a group will be motivated by a number of concrete examples. Standard results in the theory of groups will be proved rigorously. Applications of group theory in geometry will be stressed. | en_GB |
dcterms.creator | Cooper, Barrie | en_GB |
dcterms.educationLevel | ukel8 | en_GB |
dcterms.format | Learning Object | en_GB |
dcterms.format | Text | en_GB |
dcterms.format | HTML | en_GB |
dcterms.format | IMS Content Package | en_GB |
dcterms.language | en | en_GB |
dcterms.subject | UKOER | en_GB |
dcterms.tableOfContents | Author 1.Overview 2.Numbers, Symmetries and Groups module 3.Portolio Coursework | en_GB |
dcterms.title | Numbers, Symmetries and Groups | en_GB |
dcterms.type | Exercise | en_GB |
dcterms.type | Lecture | en_GB |
dcterms.type | Problem Statement | en_GB |