Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils
Malhi, Y; Metcalfe, DB; Silva-Espejo, JE; et al.Jiménez, E; Navarrete, D; Almeida, S; Costa, ACL; Salinas, N; Phillips, OL; Anderson, LO; Alvarez, E; Baker, Tim; Goncalvez, PH; Huamán-Ovalle, J; Mamani-Solórzano, M; Meir, P; Monteagudo Mendoza, Abel; Patĩo, S; Peñuela-Mora, Maria Cristina; Prieto, A; Quesada, CA; Rozas-Dávila, A; Rudas, A; Silva Jr, JA; Vásquez, R; Aragao, Luiz
Date: 1 December 2009
Journal
Biogeosciences
Publisher
European Geosciences Union (EGU)
Publisher DOI
Abstract
The net primary productivity (NPP) of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the ...
The net primary productivity (NPP) of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1) How do Amazonian forests allocate productivity among its above- and below-ground components? (2) How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3MgC ha−1 yr−1 (mean±standard error), at a white sand plot, and 17.0±1.4MgC ha−1 yr−1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9MgC ha−1 yr−1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.
Geography - old structure
Collections of Former Colleges
Item views 0
Full item downloads 0