Show simple item record

dc.contributor.authorEverson, Richard M.
dc.contributor.authorFieldsend, Jonathan E.
dc.date.accessioned2013-07-08T13:32:40Z
dc.date.issued2004-10-29
dc.description.abstractk-nearest neighbour (k-nn) model is a simple, popular classifier. Probabilistic k-nn is a more powerful variant in which the model is cast in a Bayesian framework using (reversible jump) Markov chain Monte Carlo methods to average out the uncertainy over the model parameters.The k-nn classifier depends crucially on the metric used to determine distances between data points. However, scalings between features, and indeed whether some subset of features is redundant, are seldom known a priori. Here we introduce a variable metric extension to the probabilistic k-nn classifier, which permits averaging over all rotations and scalings of the data. In addition, the method permits automatic rejection of irrelevant features. Examples are provided on synthetic data, illustrating how the method can deform feature space and select salient features, and also on real-world data.en_GB
dc.identifier.citationIntelligent Data Engineering and Automated Learning – IDEAL 2004, edited by Zheng Rong Yang, Hujun Yin, and Richard M. Everson, pp. 654–659. Lecture Notes in Computer Science volume 3177en_GB
dc.identifier.doi10.1007/978-3-540-28651-6_96
dc.identifier.urihttp://hdl.handle.net/10871/11565
dc.language.isoenen_GB
dc.publisherSpringer Verlagen_GB
dc.titleA Variable Metric Probabilistic k-Nearest-Neighbours Classifieren_GB
dc.typeConference paperen_GB
dc.date.available2013-07-08T13:32:40Z
dc.contributor.editorYang, ZR
dc.contributor.editorEverson, R
dc.contributor.editorYin, H
dc.identifier.isbn9783540228813
dc.identifier.isbn9783540286516
dc.identifier.issn0302-9743
dc.descriptionCopyright © 2004 Springer Verlag. The final publication is available at https://doi.org/10.1007/978-3-540-28651-6_96en_GB
dc.description5th International Conference, Exeter, UK, 25 - 27 August 2004en_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record