Show simple item record

dc.contributor.authorAgius, Phaedra
dc.contributor.authorYing, Yiming
dc.contributor.authorCampbell, Colin
dc.date.accessioned2013-07-22T16:06:05Z
dc.date.issued2009-06-05
dc.description.abstractWe propose Bayesian generative models for unsupervised learning with two types of data and an assumed dependency of one type of data on the other. We consider two algorithmic ap- proaches, based on a correspondence model where latent variables are shared across datasets. These models indicate the appropriate number of clusters in addition to indicating relevant features in both types of data. We evaluate the model on arti¯cially created data. We then apply the method to a breast cancer dataset consisting of gene expression and microRNA array data derived from the same patients. We assume dependence of gene expression on microRNA expression in this study. The method ranks genes within subtypes which have statistically signi¯cant abnormal expression and ranks associated abnormally expressing mi- croRNA. We report a genetic signature for the basal-like subtype of breast cancer found across a number of previous gene expression array studies. Using the two algorithmic ap- proaches we ¯nd that this signature also arises from clustering on the microRNA expression data and appears derivative from this data.en_GB
dc.identifier.citationVol. 8 (1), pp. 1-27en_GB
dc.identifier.doi10.2202/1544-6115.1441
dc.identifier.urihttp://hdl.handle.net/10871/11963
dc.language.isoenen_GB
dc.publisherWalter de Gruyteren_GB
dc.subjectmultiple datasetsen_GB
dc.subjectcorrespondence modelen_GB
dc.subjectBayesian learningen_GB
dc.subjectunsupervised learningen_GB
dc.subjectclustersen_GB
dc.subjectbreast canceren_GB
dc.subjectcancer subtypesen_GB
dc.subjectgenesen_GB
dc.subjectmicroRNAen_GB
dc.titleBayesian unsupervised learning with multiple data typesen_GB
dc.typeArticleen_GB
dc.date.available2013-07-22T16:06:05Z
dc.descriptionCopyright © 2009 Walter de Gruyter. The final publication is available at https://doi.org/10.2202/1544-6115.1441en_GB
dc.identifier.eissn1544-6115
dc.identifier.journalStatistical Applications in Genetics and Molecular Biologyen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record