Show simple item record

dc.contributor.authorGuilbaud, R
dc.contributor.authorPoulton, SW
dc.contributor.authorThompson, J
dc.contributor.authorHusband, KF
dc.contributor.authorZhu, M
dc.contributor.authorZhou, Y
dc.contributor.authorShields, GA
dc.contributor.authorLenton, TM
dc.date.accessioned2020-03-16T13:14:59Z
dc.date.issued2020-03-02
dc.description.abstractThe redox chemistry of anoxic continental margin settings evolved from widespread sulfide-containing (euxinic) conditions to a global ferruginous (iron-containing) state in the early Neoproterozoic era (from ~1 to 0.8 billion years ago). Ocean redox chemistry exerts a strong control on the biogeochemical cycling of phosphorus, a limiting nutrient, and hence on primary production, but the response of the phosphorus cycle to this major ocean redox transition has not been investigated. Here, we use a geochemical speciation technique to investigate the phase partitioning of phosphorus in an open marine, early Neoproterozoic succession from the Huainan Basin, North China. We find that effective removal of bioavailable phosphorus in association with iron minerals in a globally ferruginous ocean resulted in oligotrophic (nutrient limited) conditions, and hence a probable global decrease in primary production, organic carbon burial and, subsequently, oxygen production. Nevertheless, phosphorus availability and organic carbon burial were sufficient to maintain an oxidizing atmosphere. These data imply substantial nutrient-driven variability in atmospheric oxygen levels through the Proterozoic, rather than the stable levels commonly invoked.en_GB
dc.description.sponsorshipRoyal Society (Charity)en_GB
dc.description.sponsorshipNatural Environment Research Council (NERC)en_GB
dc.description.sponsorshipChinese Academy of Sciencesen_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.identifier.citationPublished online 2 March 2020en_GB
dc.identifier.doi10.1038/s41561-020-0548-7
dc.identifier.grantnumberWM120091en_GB
dc.identifier.grantnumberNE/I005978/1en_GB
dc.identifier.grantnumber41661134048en_GB
dc.identifier.grantnumberNE/P013651en_GB
dc.identifier.grantnumberXDB18000000en_GB
dc.identifier.urihttp://hdl.handle.net/10871/120271
dc.language.isoenen_GB
dc.publisherNature Researchen_GB
dc.rights.embargoreasonUnder embargo until 2 September 2020 in compliance with publisher policy.en_GB
dc.rights(c) 2020 Springer Nature Limiteden_GB
dc.subjectelement cyclesen_GB
dc.subjectMarine chemistryen_GB
dc.subjectpalaeoceanographyen_GB
dc.subjectpalaeoclimateen_GB
dc.subjectPalaeoecologyen_GB
dc.titlePhosphorus-limited conditions in the early Neoproterozoic ocean maintained low levels of atmospheric oxygenen_GB
dc.typeArticleen_GB
dc.date.available2020-03-16T13:14:59Z
dc.identifier.issn1752-0894
dc.descriptionThis is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record.en_GB
dc.descriptionAll data generated and analysed for the current study are attached, and are available from data repository https://doi.org/10.5285/72c9a48f-4813-4507-9137-a97d7e6bd2d9.en_GB
dc.identifier.journalNature Geoscienceen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2020-01-31
exeter.funder::Royal Society (Charity)en_GB
exeter.funder::Natural Environment Research Council (NERC)en_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2020-01-31
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-03-16T13:06:36Z
refterms.versionFCDAM
refterms.dateFOA2020-09-01T23:00:00Z
refterms.panelCen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record