Show simple item record

dc.contributor.authorde Winter, NJ
dc.contributor.authorUllmann, CV
dc.contributor.authorSørensen, AM
dc.contributor.authorThibault, N
dc.contributor.authorGoderis, S
dc.contributor.authorVan Malderen, SJM
dc.contributor.authorSnoeck, C
dc.contributor.authorGoolaerts, S
dc.contributor.authorVanhaecke, F
dc.contributor.authorClaeys, P
dc.date.accessioned2020-06-03T08:37:56Z
dc.date.issued2020-06-03
dc.description.abstractThe Campanian age (Late Cretaceous) is characterized by a warm greenhouse climate with limited land-ice volume. This makes this period an ideal target for studying climate dynamics during greenhouse periods, which are essential for predictions of future climate change due to anthropogenic greenhouse gas emissions. Well-preserved fossil shells from the Campanian (±78 Ma) high mid-latitude (50∘ N) coastal faunas of the Kristianstad Basin (southern Sweden) offer a unique snapshot of short-term climate and environmental variability, which complements existing long-term climate reconstructions. In this study, we apply a combination of high-resolution spatially resolved trace element analyses (micro-X-ray fluorescence – µXRF – and laser ablation inductively coupled plasma mass spectrometry – LA-ICP-MS), stable isotope analyses (IRMS) and growth modeling to study short-term (seasonal) variations recorded in the oyster species Rastellum diluvianum from the Ivö Klack locality. Geochemical records through 12 specimens shed light on the influence of specimen-specific and ontogenetic effects on the expression of seasonal variations in shell chemistry and allow disentangling vital effects from environmental influences in an effort to refine paleoseasonality reconstructions of Late Cretaceous greenhouse climates. Growth models based on stable oxygen isotope records yield information on the mode of life, circadian rhythm and reproductive cycle of these extinct oysters. This multi-proxy study reveals that mean annual temperatures in the Campanian higher mid-latitudes were 17 to 19 ∘C, with winter minima of ∼13 ∘C and summer maxima of 26 ∘C, assuming a Late Cretaceous seawater oxygen isotope composition of −1 ‰ VSMOW (Vienna standard mean ocean water). These results yield smaller latitudinal differences in temperature seasonality in the Campanian compared to today. Latitudinal temperature gradients were similar to the present, contrasting with previous notions of “equable climate” during the Late Cretaceous. Our results also demonstrate that species-specific differences and uncertainties in the composition of Late Cretaceous seawater prevent trace element proxies (Mg∕Ca, Sr∕Ca, Mg∕Li and Sr∕Li) from being used as reliable temperature proxies for fossil oyster shells. However, trace element profiles can serve as a quick tool for diagenesis screening and investigating seasonal growth patterns in ancient shells.en_GB
dc.description.sponsorshipFlemish Institute for Science and Technology (IWT)en_GB
dc.description.sponsorshipHercules Infrastructureen_GB
dc.description.sponsorshipFWOen_GB
dc.description.sponsorshipBelspo BRAIN Projecten_GB
dc.description.sponsorshipCarlsbergfondeten_GB
dc.description.sponsorshipVUB Strategic Research.en_GB
dc.identifier.citationVol. 17, pp. 2897 - 2922en_GB
dc.identifier.doi10.5194/bg-17-2897-2020
dc.identifier.grantnumberIWT700en_GB
dc.identifier.grantnumber12ZB220Nen_GB
dc.identifier.grantnumberHERC09en_GB
dc.identifier.grantnumberHERC46en_GB
dc.identifier.grantnumberG017217Nen_GB
dc.identifier.grantnumberBR/175/A2/CHICXULUBen_GB
dc.identifier.grantnumberCF16-0457en_GB
dc.identifier.urihttp://hdl.handle.net/10871/121269
dc.language.isoenen_GB
dc.publisherEuropean Geosciences Union (EGU) / Copernicus Publicationsen_GB
dc.rights© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.en_GB
dc.titleShell chemistry of the boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates and life cycle of an extinct Cretaceous oysteren_GB
dc.typeArticleen_GB
dc.date.available2020-06-03T08:37:56Z
dc.identifier.issn1726-4170
dc.descriptionThis is the final version. Available from European Geosciences Union (EGU) / Copernicus Publications via the DOI in this record. en_GB
dc.identifier.journalBiogeosciencesen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2020-04-28
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2020-04-28
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-06-03T08:33:18Z
refterms.versionFCDVoR
refterms.dateFOA2020-06-03T08:37:59Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
Except where otherwise noted, this item's licence is described as © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.