"Too Big To Ignore": A feasibility analysis of detecting fishing events in Gabonese small-scale fisheries.
dc.contributor.author | Cardiec, F | |
dc.contributor.author | Bertrand, S | |
dc.contributor.author | Witt, MJ | |
dc.contributor.author | Metcalfe, K | |
dc.contributor.author | Godley, BJ | |
dc.contributor.author | McClellan, C | |
dc.contributor.author | Vilela, R | |
dc.contributor.author | Parnell, RJ | |
dc.contributor.author | le Loc'h, F | |
dc.date.accessioned | 2020-06-15T07:45:37Z | |
dc.date.issued | 2020-06-10 | |
dc.description.abstract | In many developing countries, small-scale fisheries provide employment and important food security for local populations. To support resource management, the description of the spatiotemporal extent of fisheries is necessary, but often poorly understood due to the diffuse nature of effort, operated from numerous small wooden vessels. Here, in Gabon, Central Africa, we applied Hidden Markov Models to detect fishing patterns in seven different fisheries (with different gears) from GPS data. Models were compared to information collected by on-board observers (7 trips) and, at a larger scale, to a visual interpretation method (99 trips). Models utilizing different sampling resolutions of GPS acquisition were also tested. Model prediction accuracy was high with GPS data sampling rates up to three minutes apart. The minor loss of accuracy linked to model classification is largely compensated by the savings in time required for analysis, especially in a context of nations or organizations with limited resources. This method could be applied to larger datasets at a national or international scale to identify and more adequately manage fishing effort. | en_GB |
dc.description.sponsorship | US Fish and Wildlife Service | en_GB |
dc.description.sponsorship | Department for Environment, Food and Rural Affairs UK | en_GB |
dc.description.sponsorship | LMI TAPIOCA | en_GB |
dc.description.sponsorship | European Union | en_GB |
dc.description.sponsorship | Arc Emeraude Project | en_GB |
dc.identifier.citation | Vol. 15 (6), pp. e0234091 | en_GB |
dc.identifier.doi | 10.1371/journal.pone.0234091 | |
dc.identifier.grantnumber | AFR-1427 / F14AP00555 | en_GB |
dc.identifier.grantnumber | Projects 17-005/20-009/23-011/26-014 | en_GB |
dc.identifier.grantnumber | 88881.142689/2017-01 | en_GB |
dc.identifier.grantnumber | 817578 | en_GB |
dc.identifier.grantnumber | ANPN/AFD | en_GB |
dc.identifier.other | PONE-D-19-34673 | |
dc.identifier.uri | http://hdl.handle.net/10871/121429 | |
dc.language.iso | en | en_GB |
dc.publisher | Public Library of Science | en_GB |
dc.relation.url | https://www.ncbi.nlm.nih.gov/pubmed/32520945 | en_GB |
dc.rights | Copyright: © 2020 Cardiec et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | en_GB |
dc.subject | Hidden Markov Models | en_GB |
dc.subject | fisheries | en_GB |
dc.subject | boats | en_GB |
dc.subject | animal behavior | en_GB |
dc.subject | animal tagging | en_GB |
dc.subject | fish | en_GB |
dc.subject | data processing | en_GB |
dc.subject | gabon | en_GB |
dc.title | "Too Big To Ignore": A feasibility analysis of detecting fishing events in Gabonese small-scale fisheries. | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2020-06-15T07:45:37Z | |
exeter.place-of-publication | United States | en_GB |
dc.description | This is the final version. Available from Public Library of Science via the DOI in this record. | en_GB |
dc.description | All shapefiles are available from the Dryad database (datadryad.org/stash/share/BN9V6JHrdep3pMWH7zGuUiOfK9IEaeeodQ9LzVOY1Cw). | en_GB |
dc.identifier.eissn | 1932-6203 | |
dc.identifier.journal | PLoS One | en_GB |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_GB |
dcterms.dateAccepted | 2020-05-18 | |
rioxxterms.version | VoR | en_GB |
rioxxterms.licenseref.startdate | 2020-05-18 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2020-06-15T07:41:27Z | |
refterms.versionFCD | VoR | |
refterms.dateFOA | 2020-06-15T07:45:40Z | |
refterms.panel | A | en_GB |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as Copyright: © 2020 Cardiec et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.