Show simple item record

dc.contributor.authorVaughan, N
dc.contributor.authorDubey, VN
dc.contributor.authorWee, MYK
dc.contributor.authorIsaacs, R
dc.date.accessioned2020-06-25T15:26:33Z
dc.date.issued2014-09-04
dc.description.abstractThis work is to build upon the concept of matching a person's weight, height and age to their overall body shape to create an adjustable three-dimensional model. A versatile and accurate predictor of body size and shape and ligament thickness is required to improve simulation for medical procedures. A model which is adjustable for any size, shape, body mass, age or height would provide ability to simulate procedures on patients of various body compositions. Methods: Three methods are provided for estimating body circumferences and ligament thicknesses for each patient. The first method is using empirical relations from body shape and size. The second method is to load a dataset from a magnetic resonance imaging (MRI) scan or ultrasound scan containing accurate ligament measurements. The third method is a developed artificial neural network (ANN) which uses MRI dataset as a training set and improves accuracy using error back-propagation, which learns to increase accuracy as more patient data is added. The ANN is trained and tested with clinical data from 23,088 patients. Results: The ANN can predict subscapular skinfold thickness within 3.54. mm, waist circumference 3.92. cm, thigh circumference 2.00. cm, arm circumference 1.21. cm, calf circumference 1.40. cm, triceps skinfold thickness 3.43. mm. Alternative regression analysis method gave overall slightly less accurate predictions for subscapular skinfold thickness within 3.75. mm, waist circumference 3.84. cm, thigh circumference 2.16. cm, arm circumference 1.34. cm, calf circumference 1.46. cm, triceps skinfold thickness 3.89. mm. These calculations are used to display a 3D graphics model of the patient's body shape using OpenGL and adjusted by 3D mesh deformations. Conclusions: A patient-specific epidural simulator is presented using the developed body shape model, able to simulate needle insertion procedures on a 3D model of any patient size and shape. The developed ANN gave the most accurate results for body shape, size and ligament thickness. The resulting simulator offers the experience of simulating needle insertions accurately whilst allowing for variation in patient body mass, height or age.en_GB
dc.identifier.citationVol. 62, pp. 129 - 140en_GB
dc.identifier.doi10.1016/j.artmed.2014.08.005
dc.identifier.urihttp://hdl.handle.net/10871/121664
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights© 2014. This version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dc.subjectBody shapeen_GB
dc.subjectDeformation modelen_GB
dc.subjectPatient-specificen_GB
dc.subjectHuman modelen_GB
dc.subjectEpiduralen_GB
dc.subjectSimulationen_GB
dc.titleParametric model of human body shape and ligaments for patient-specific epidural simulationen_GB
dc.typeArticleen_GB
dc.date.available2020-06-25T15:26:33Z
dc.identifier.issn0933-3657
dc.descriptionThis is the author accepted manuscript. The final version is available from the publisher via the DOI in this recorden_GB
dc.identifier.journalArtificial Intelligence in Medicineen_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dcterms.dateAccepted2014-08-10
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2014-08-10
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-06-25T15:24:22Z
refterms.versionFCDAM
refterms.dateFOA2020-06-25T15:26:39Z
refterms.panelAen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2014. This version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/  
Except where otherwise noted, this item's licence is described as © 2014. This version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/