Show simple item record

dc.contributor.authorAhilan, S
dc.contributor.authorGuan, M
dc.contributor.authorWright, N
dc.contributor.authorThorne, C
dc.date.accessioned2020-07-07T13:50:47Z
dc.date.issued2020-07-02
dc.description.abstractTo evaluate the effectiveness of blue–green infrastructure (BGI) at multiple timescales requires a modelling tool that is capable of simulating the underlying hydraulic and morphodynamic processes within BGI. In this context, this study presents a hydro-morphodynamic modelling tool for systematic assessment of the multiple benefits of BGI on flood attenuation and sediment trapping. The model combines two-dimensional shallow-water equations with an advection–diffusion equation for fine sediment transport. The model can simulate the dynamic processes of erosion, transport and deposition of non-cohesive, fine-grained suspended sediments (i.e. fine sands and silts) under the action of flow hydraulics typical of those found in BGI. To demonstrate the model capability, it is applied to two case studies, including (a) the effects of a restored floodplain and (b) the effectiveness of an urban stormwater pond. The simulation results indicate that nature-based approaches, such as floodplain restoration and stormwater ponds, are effective for attenuating flow and retaining suspended sediments. More specifically, stormwater ponds are suitable for more-frequent smaller events (< 5-year), while floodplain restoration is more effective for extreme flood events (e.g. 30 to 100-year) where more floodwaters can be stored. From a longer-term viewpoint, stormwater ponds lose their storage capacity over a period of time; they require regular maintenance to uphold their hydraulic performance. The model developed in this study is an effective tool for the evaluation of BGI at various temporal and spatial scales, and could be applied to similar cases.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipUniversity of Hong Kongen_GB
dc.identifier.citationIn: Blue–Green Cities: Integrating urban flood risk management with green infrastructure, edited by Colin R. Thorne. Chapter 4, pp. 51 - 64en_GB
dc.identifier.doi10.1680/bgc.64195.051
dc.identifier.grantnumberEP/K013661/1en_GB
dc.identifier.grantnumber201812159002en_GB
dc.identifier.urihttp://hdl.handle.net/10871/121817
dc.language.isoenen_GB
dc.publisherICE Publishing / Thomas Telforden_GB
dc.rights.embargoreasonUnder indefinite embargo due to publisher policy  en_GB
dc.rights© Thomas Telford Limited 2020en_GB
dc.subjectBlue-green infrastructureen_GB
dc.titleEvaluating the hydraulic and hydro-morphodynamic performance of blue–green infrastructure over event and long-term timescalesen_GB
dc.typeBook chapteren_GB
dc.date.available2020-07-07T13:50:47Z
dc.contributor.editorThorne, Cen_GB
dc.identifier.isbn978-0-7277-6420-1
dc.relation.isPartOfBlue–Green Citiesen_GB
exeter.place-of-publicationOne Great George Street, Westminster, London SW1P 3AA.en_GB
dc.descriptionThis is the author accepted manuscript. The final version is available from ICE Publishing via the DOI in this recorden_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
exeter.funder::Engineering and Physical Sciences Research Council (EPSRC)en_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2020-07-02
rioxxterms.typeBook chapteren_GB
refterms.dateFCD2020-07-07T13:16:25Z
refterms.versionFCDAM


Files in this item

This item appears in the following Collection(s)

Show simple item record