Show simple item record

dc.contributor.authorWahlstrom, J
dc.contributor.authorJalden, J
dc.contributor.authorSkog, I
dc.contributor.authorHandel, P
dc.date.accessioned2020-07-23T13:43:41Z
dc.date.issued2018-09-06
dc.description.abstractThe expectation-maximization algorithm is a commonly employed tool for system identification. However, for a large set of state-space models, the maximization step cannot be solved analytically. In these situations, a natural remedy is to make use of the expectation-maximization gradient algorithm, i.e., to replace the maximization step by a single iteration of Newton’s method. We propose alternative expectationmaximization algorithms that replace the maximization step with a single iteration of some other well-known optimization method. These algorithms parallel the expectation-maximization gradient algorithm while relaxing the assumption of a concave objective function. The benefit of the proposed expectation-maximization algorithms is demonstrated with examples based on standard observation models in tracking and localization.en_GB
dc.identifier.citation21st International Conference on Information Fusion (FUSION 2018), Cambridge UK, 10 July 2018 - 13 July 2018en_GB
dc.identifier.doi10.23919/icif.2018.8455234
dc.identifier.urihttp://hdl.handle.net/10871/122107
dc.language.isoenen_GB
dc.publisherIEEEen_GB
dc.rights© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksen_GB
dc.subjectExpectation-maximizationen_GB
dc.subjectsystem identificationen_GB
dc.subjectGauss-Newton methoden_GB
dc.subjectLevenberg-Marquardten_GB
dc.subjecttrust regionen_GB
dc.titleAlternative EM algorithms for nonlinear state-space modelsen_GB
dc.typeConference proceedingsen_GB
dc.date.available2020-07-23T13:43:41Z
dc.identifier.isbn9780996452762
dc.descriptionThis is the author accepted manuscript. The final version is available from the publisher via the DOI in this recorden_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2018
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2018
rioxxterms.typeConference Paper/Proceeding/Abstracten_GB
refterms.dateFCD2020-07-23T13:42:46Z
refterms.versionFCDAM
refterms.dateFOA2020-07-23T13:43:49Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record