A new system to classify global climate zones based on plant physiology and using high temporal resolution climate data
dc.contributor.author | Gardner, AS | |
dc.contributor.author | Maclean, IMD | |
dc.contributor.author | Gaston, KJ | |
dc.date.accessioned | 2020-07-30T08:13:32Z | |
dc.date.issued | 2020-07-11 | |
dc.description.abstract | Aim: Climate classification systems (CCSs) can be used to predict how species’ distributions might be altered by climate change and to increase the reliability of these estimates is an important goal in biogeographical research. We produce an objective, global climate classification system (CCS) at high temporal resolution based on plant physiology as a robust way to predict how climate change may impact terrestrial biomes. Location: Global. Taxon: Plantae. Methods: We construct ten climate variables that capture the physiological processes that determine plant distributions and use cluster analysis to present a new global CCS which accounts for variation in these aspects of climate. We use Kappa statistics to compare the distribution of climate zones in a five- and six-cluster CCS constructed using the physiology variables to the popular Köppen-Geiger and Köppen-Trewartha CCSs, respectively, and find good correlation in both cases. Results: Our CCS highlights ten climate zones for plants. We show that clustering of the physiologically relevant variables reproduces known, present-day patterns of vegetation but also indicates important areas where zone assignment in our physiological CCSs is different to that of the Köppen systems. Main conclusions: The existing Köppen CCSs do not entirely reflect the physiological processes that determine plant distributions. Predictions of climate-driven changes in plant distributions may thus be unreliable in areas where zone assignment by clustering of physiologically relevant variables is different to that of the Köppen systems. Both the physiological relevance and temporal resolution of climate variables used to construct CCSs should be considered in order to predict reliably how climate change may alter plant distributions and to support an appropriate global response to conserve plant biodiversity for the future. | en_GB |
dc.description.sponsorship | Natural Environment Research Council (NERC) | en_GB |
dc.identifier.citation | Published online 11 July 2020 | en_GB |
dc.identifier.doi | 10.1111/jbi.13927 | |
dc.identifier.grantnumber | NE/P01229/1 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/122247 | |
dc.language.iso | en | en_GB |
dc.publisher | Wiley | en_GB |
dc.rights | © 2020 The Authors. Journal of Biogeography published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. | en_GB |
dc.subject | Climate change | en_GB |
dc.subject | climate classification | en_GB |
dc.subject | Köppen | en_GB |
dc.subject | physiology | en_GB |
dc.subject | plants | en_GB |
dc.subject | species distribution models | en_GB |
dc.subject | temporal resolution | en_GB |
dc.title | A new system to classify global climate zones based on plant physiology and using high temporal resolution climate data | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2020-07-30T08:13:32Z | |
dc.identifier.issn | 0305-0270 | |
dc.description | This is the final version. Available on open access from Wiley via the DOI in this record | en_GB |
dc.identifier.journal | Journal of Biogeography | en_GB |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_GB |
dcterms.dateAccepted | 2020-05-22 | |
rioxxterms.version | VoR | en_GB |
rioxxterms.licenseref.startdate | 2020-05-22 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2020-07-30T08:11:40Z | |
refterms.versionFCD | VoR | |
refterms.dateFOA | 2020-07-30T08:13:39Z | |
refterms.panel | A | en_GB |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as © 2020 The Authors. Journal of Biogeography published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.