Show simple item record

dc.contributor.authorSun, Y
dc.contributor.authorWu, M
dc.contributor.authorRuan, W
dc.contributor.authorHuang, X
dc.contributor.authorKwiatkowska, M
dc.contributor.authorKroening, D
dc.date.accessioned2020-08-04T08:54:18Z
dc.date.issued2018-09-03
dc.description.abstractConcolic testing combines program execution and symbolic analysis to explore the execution paths of a software program. This paper presents the first concolic testing approach for Deep Neural Networks (DNNs). More specifically, we formalise coverage criteria for DNNs that have been studied in the literature, and then develop a coherent method for performing concolic testing to increase test coverage. Our experimental results show the effectiveness of the concolic testing approach in both achieving high coverage and finding adversarial examples.en_GB
dc.identifier.citationASE 2018: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, 3-7 September 2018, Montpellier, France, pp. 109 - 119en_GB
dc.identifier.doi10.1145/3238147.3238172
dc.identifier.urihttp://hdl.handle.net/10871/122298
dc.language.isoenen_GB
dc.publisherAssociation for Computing Machinery (ACM)en_GB
dc.rights© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.en_GB
dc.subjectneural networksen_GB
dc.subjectsymbolic executionen_GB
dc.subjectconcolic testingen_GB
dc.titleConcolic testing for deep neural networksen_GB
dc.typeConference paperen_GB
dc.date.available2020-08-04T08:54:18Z
dc.identifier.isbn9781450359375
dc.descriptionThis is the author accepted manuscript. The final version is available from ACM via the DOI in this recorden_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2018-09-03
rioxxterms.typeConference Paper/Proceeding/Abstracten_GB
refterms.dateFCD2020-08-04T08:52:03Z
refterms.versionFCDAM
refterms.dateFOA2020-08-04T08:54:23Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record