Show simple item record

dc.contributor.authorLange, PK
dc.contributor.authorJeremy Werdell, P
dc.contributor.authorErickson, ZK
dc.contributor.authorDall’Olmo, G
dc.contributor.authorBrewin, RJW
dc.contributor.authorZubkov, MV
dc.contributor.authorTarran, GA
dc.contributor.authorBouman, HA
dc.contributor.authorSlade, WH
dc.contributor.authorCraig, SE
dc.contributor.authorPoulton, NJ
dc.contributor.authorBracher, A
dc.contributor.authorLomas, MW
dc.contributor.authorCetinić, I
dc.date.accessioned2020-08-18T15:53:55Z
dc.date.issued2020-08-17
dc.description.abstractCell abundances of Prochlorococcus, Synechococcus, and autotrophic picoeukaryotes were estimated in surface waters using principal component analysis (PCA) of hyperspectral and multispectral remote-sensing reflectance data. This involved the development of models that employed multilinear correlations between cell abundances across the Atlantic Ocean and a combination of PCA scores and sea surface temperatures. The models retrieve high Prochlorococcus abundances in the Equatorial Convergence Zone and show their numerical dominance in oceanic gyres, with decreases in Prochlorococcus abundances towards temperate waters where Synechococcus flourishes, and an emergence of picoeukaryotes in temperate waters. Fine-scale in-situ sampling across ocean fronts provided a large dynamic range of measurements for the training dataset, which resulted in the successful detection of fine-scale Synechococcus patches. Satellite implementation of the models showed good performance (R2 > 0.50) when validated against in-situ data from six Atlantic Meridional Transect cruises. The improved relative performance of the hyperspectral models highlights the importance of future high spectral resolution satellite instruments, such as the NASA PACE mission’s Ocean Color Instrument, to extend our spatiotemporal knowledge about ecologically relevant phytoplankton assemblages.en_GB
dc.description.sponsorshipNASAen_GB
dc.description.sponsorshipNatural Environment Research Council (NERC)en_GB
dc.identifier.citationVol. 28 (18), pp. 25682-25705en_GB
dc.identifier.doi10.1364/oe.398127
dc.identifier.grantnumberNNX13AC42Gen_GB
dc.identifier.grantnumberNE/R015953/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/122529
dc.language.isoenen_GB
dc.publisherOptical Society of Americaen_GB
dc.rights© 2020. open access. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.en_GB
dc.titleRadiometric approach for the detection of picophytoplankton assemblages across oceanic frontsen_GB
dc.typeArticleen_GB
dc.date.available2020-08-18T15:53:55Z
dc.descriptionThis is the final version. Available on open access from the Optical Society of America via the DOI in this recorden_GB
dc.identifier.eissn1094-4087
dc.identifier.journalOptics Expressen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2020-08-03
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2020-08-17
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-08-18T15:51:34Z
refterms.versionFCDVoR
refterms.dateFOA2020-08-18T15:53:59Z
refterms.panelCen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2020. open access. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Except where otherwise noted, this item's licence is described as © 2020. open access. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.