Show simple item record

dc.contributor.authorHussain, MZ
dc.contributor.authorYang, Z
dc.contributor.authorvan der Linden, B
dc.contributor.authorHuang, Z
dc.contributor.authorJia, Q
dc.contributor.authorCerrato, E
dc.contributor.authorFischer, RA
dc.contributor.authorKapteijn, F
dc.contributor.authorZhu, Y
dc.contributor.authorXia, Y
dc.date.accessioned2020-09-03T10:13:39Z
dc.date.issued2020-09-04
dc.description.abstractSurface-functionalized nitrogen/carbon co-doped polymorphic TiO2 phase junction nanoparticles uniformly distributed in porous carbon matrix were synthesized by a simple one-step pyrolysis of titanium based metal-organic framework (MOF), NH2-MIL-125(Ti) at 700 ºC under water vapour atmosphere. Introducing water vapour during the pyrolysis of NH2-MIL-125(Ti) not only functionalizes the derived porous carbon matrix with carboxyl groups but also forms additional oxygen-rich N like interstitial/intraband states lying above the valence band of TiO2 along with the self-doped carbon, which further narrows the energy band gaps of polymorphic TiO2 nanoparticles that enhance photocatalytic charge transfer efficiency. Without co-catalyst, sample N-C-TiO2/CArW demonstrates H2 evolution activity of 426 µmol gcat -1 h -1 , which remarkably outperforms commercial TiO2 (P-25) and N-C-TiO2/CAr with a 5-fold and 3-fold H2 generation, respectively. This study clearly shows that in water vapour atmosphere during the pyrolysis increases the hydrophilicity of the Ti-MOF derived composites by the functionalization of porous carbon matrix with carboxylic groups, significantly enhancing the electrical conductivity and charge transfer efficiency due to the formation of additional localized oxygen-rich N like interstitial/intraband states. This work also demonstrates that by optimizing the anatase-rutile phase composition of the TiO2 polymorphs, tuning the energy band gaps by N/C co-doping and functionalizing the porous carbon matrix in the N-C-TiO2/C nanocomposites, the photocatalytic H2 generation activity can be further enhanced.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipLeverhulme Trusten_GB
dc.identifier.citationPublished online 4 September 2020en_GB
dc.identifier.doi10.1016/j.jechem.2020.08.048
dc.identifier.grantnumberRPG-2018-320en_GB
dc.identifier.urihttp://hdl.handle.net/10871/122691
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights.embargoreasonUnder embargo until 4 September 2021 in compliance with publisher policyen_GB
dc.rights© 2020. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dc.subjectMetal-organic frameworken_GB
dc.subjectTiO2en_GB
dc.subjectPorous carbonen_GB
dc.subjectNanocompositeen_GB
dc.subjectPhotocatalysisen_GB
dc.subjectHydrogen generationen_GB
dc.titleSurface functionalized N-C-TiO2/C nanocomposites derived from metal-organic framework in water vapour for enhanced photocatalytic H2 generationen_GB
dc.typeArticleen_GB
dc.date.available2020-09-03T10:13:39Z
dc.identifier.issn2095-4956
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recorden_GB
dc.identifier.journalJournal of Energy Chemistryen_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dcterms.dateAccepted2020-08-23
exeter.funder::Engineering and Physical Sciences Research Council (EPSRC)en_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2020-08-23
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-09-01T19:46:51Z
refterms.versionFCDAM
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2020. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  
Except where otherwise noted, this item's licence is described as © 2020. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/