Show simple item record

dc.contributor.authorArens, F
dc.contributor.authorGottsmann, J
dc.contributor.authorStrehlow, K
dc.contributor.authorHickey, J
dc.contributor.authorKilgour, G
dc.date.accessioned2020-11-17T08:51:58Z
dc.date.issued2020-11-11
dc.description.abstractPre‐eruptive electrical signals at active volcanoes are generally interpreted in terms of electrokinetic processes. Spatio‐temporal self‐potential (SP) signals can be caused by strain‐induced fluid flow in volcanic aquifers, however, previous studies lack the quantitative assessments of these phenomena and the underpinning poroelastic responses. Here we use Finite‐Element Analysis to study poroelastic responses induced by subsurface stressing from sill and dike sources by jointly solving for ground displacements, pore pressure and SP signals. We evaluate the influence of pressure source orientation on the poroelastic response in two different volcanic aquifers (pyroclastic and lava flow) to provide insights on emergent geodetic and SP signals and their sensitivity to governing parameters. Strain‐induced SP amplitudes deduced from a reference parameter set vary in both aquifer models and are of negative polarity (‐0.35 mV and ‐22.6 mV) for a pressurized dike and of positive polarity (+4 mV and +20 mV) for a pressurized sill. Importantly, we find uniquely different SP and ground displacement patterns from either sill or dike intrusions. Our study shows that SP signals are highly sensitive to the subsurface Young's modulus, streaming potential coupling coefficient and electrical conductivity of the poroelastic domains. For the set of parameters tested, the dike model predicts SP amplitudes of up to ‐947 mV which are broadly representative of recorded amplitudes from active volcanoes. Our study demonstrates that electrokinetic processes reflect magma‐induced stress and strain variations and highlights the potential of joint geodetic and SP studies to gain new insights on causes of volcanic unrest.en_GB
dc.identifier.citationVol. 21 (12), article e2020GC009388en_GB
dc.identifier.doi10.1029/2020gc009388
dc.identifier.urihttp://hdl.handle.net/10871/123647
dc.language.isoenen_GB
dc.publisherAmerican Geophysical Union (AGU) / Wileyen_GB
dc.rights© 2020. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_GB
dc.subjectPoroelasticityen_GB
dc.subjectNumerical modelingen_GB
dc.subjectVolcanic unresten_GB
dc.subjectGround deformationen_GB
dc.titleElectrokinetic contributions to self‐potential signals from magmatic stressingen_GB
dc.typeArticleen_GB
dc.date.available2020-11-17T08:51:58Z
dc.identifier.issn1525-2027
dc.descriptionThis is the final version. Available on open access from the American Geophysical Union via the DOI in this recorden_GB
dc.identifier.journalGeochemistry, Geophysics, Geosystemsen_GB
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2020-11-08
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2020-11-11
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2020-11-17T08:48:32Z
refterms.versionFCDAM
refterms.dateFOA2020-12-15T15:23:40Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2020. The Authors.
This is an open access article under
the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.
Except where otherwise noted, this item's licence is described as © 2020. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.