Show simple item record

dc.contributor.authorFeldmann, J
dc.contributor.authorYoungblood, N
dc.contributor.authorKarpov, M
dc.contributor.authorGehring, H
dc.contributor.authorLi, X
dc.contributor.authorStappers, M
dc.contributor.authorLe Gallo, M
dc.contributor.authorFu, X
dc.contributor.authorLukashchuk, A
dc.contributor.authorRaja, AS
dc.contributor.authorLiu, J
dc.contributor.authorWright, CD
dc.contributor.authorSebastian, A
dc.contributor.authorKippenberg, TJ
dc.contributor.authorPernice, WHP
dc.contributor.authorBhaskaran, H
dc.date.accessioned2021-01-11T09:25:31Z
dc.date.issued2021-01-06
dc.description.abstractWith the proliferation of ultrahigh-speed mobile networks and internet-connected devices, along with the rise of artificial intelligence (AI)1, the world is generating exponentially increasing amounts of data that need to be processed in a fast and efficient way. Highly parallelized, fast and scalable hardware is therefore becoming progressively more important2. Here we demonstrate a computationally specific integrated photonic hardware accelerator (tensor core) that is capable of operating at speeds of trillions of multiply-accumulate operations per second (1012 MAC operations per second or tera-MACs per second). The tensor core can be considered as the optical analogue of an application-specific integrated circuit (ASIC). It achieves parallelized photonic in-memory computing using phase-change-material memory arrays and photonic chip-based optical frequency combs (soliton microcombs3). The computation is reduced to measuring the optical transmission of reconfigurable and non-resonant passive components and can operate at a bandwidth exceeding 14 gigahertz, limited only by the speed of the modulators and photodetectors. Given recent advances in hybrid integration of soliton microcombs at microwave line rates3,4,5, ultralow-loss silicon nitride waveguides6,7, and high-speed on-chip detectors and modulators, our approach provides a path towards full complementary metal–oxide–semiconductor (CMOS) wafer-scale integration of the photonic tensor core. Although we focus on convolutional processing, more generally our results indicate the potential of integrated photonics for parallel, fast, and efficient computational hardware in data-heavy AI applications such as autonomous driving, live video processing, and next-generation cloud computing services.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)en_GB
dc.description.sponsorshipAir Force Office of Scientific Researchen_GB
dc.description.sponsorshipEuropean Research Council (ERC)en_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.description.sponsorshipStudienstiftung des deutschen Volkesen_GB
dc.identifier.citationVol. 589, pp. 52 - 58en_GB
dc.identifier.doi10.1038/s41586-020-03070-1
dc.identifier.grantnumberEP/J018694/1en_GB
dc.identifier.grantnumberEP/M015173/1en_GB
dc.identifier.grantnumberEP/M015130/1en_GB
dc.identifier.grantnumberPE 1832/5-1en_GB
dc.identifier.grantnumberFA9550-19-1-0250en_GB
dc.identifier.grantnumber724707en_GB
dc.identifier.grantnumber682675en_GB
dc.identifier.grantnumber780848en_GB
dc.identifier.urihttp://hdl.handle.net/10871/124352
dc.language.isoenen_GB
dc.publisherNature Researchen_GB
dc.rights.embargoreasonUnder embargo until 6 July 2021 in compliance with publisher policyen_GB
dc.rights© The Author(s), under exclusive licence to Springer Nature Limited 2020en_GB
dc.titleParallel convolutional processing using an integrated photonic tensor coreen_GB
dc.typeArticleen_GB
dc.date.available2021-01-11T09:25:31Z
dc.identifier.issn0028-0836
dc.descriptionThis is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recorden_GB
dc.descriptionData availability: All data used in this study are available from the corresponding author upon reasonable request.en_GB
dc.identifier.journalNatureen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2020-11-02
exeter.funder::Engineering and Physical Sciences Research Council (EPSRC)en_GB
exeter.funder::European Commissionen_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2021-01-06
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-01-11T09:21:28Z
refterms.versionFCDAM
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record