Show simple item record

dc.contributor.authorAkrami, M
dc.contributor.authorMutlum, CD
dc.contributor.authorJavadi, A
dc.contributor.authorSalah, AH
dc.contributor.authorFath, HES
dc.contributor.authorDibaj, M
dc.contributor.authorFarmani, R
dc.contributor.authorMohammed, RH
dc.contributor.authorNegm, A
dc.date.accessioned2021-02-01T07:56:33Z
dc.date.issued2021-01-30
dc.description.abstractWater shortage, human population increase, and lack of food resources have directed societies towards sustainable energy and water resources, especially for agriculture. While open agriculture requires a massive amount of water and energy, the requirements of horticultural systems can be controlled to provide standard conditions for the plants to grow, with significant decrease in water consumption. A greenhouse is a transparent indoor environment used for horticulture, as it allows for reasonable control of the microclimate conditions (e.g., temperature, air velocity, rate of ventilation, and humidity). While such systems create a controlled environment for the plants, the greenhouses need ventilation to provide fresh air. In order to have a sustainable venting mechanism, a novel solution has been proposed in this study providing a naturally ventilating system required for the plants, while at the same time reducing the energy requirements for cooling or other forced ventilation techniques. Computational fluid dynamics (CFD) was used to analyse the ventilation requirements for different vent opening scenarios, showing the importance of inlet locations for the proposed sustainable greenhouse system.en_GB
dc.description.sponsorshipBritish Council (BC) of UKen_GB
dc.description.sponsorshipScience, Technology, and Innovation Funding Authority (STIFA) of Egypten_GB
dc.identifier.citationVol 13 (3), article 1446en_GB
dc.identifier.doi10.3390/su13031446
dc.identifier.grantnumber332435306en_GB
dc.identifier.grantnumber30771en_GB
dc.identifier.urihttp://hdl.handle.net/10871/124567
dc.language.isoenen_GB
dc.publisherMDPIen_GB
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_GB
dc.subjectgreenhouseen_GB
dc.subjectcomputational fluid dynamicsen_GB
dc.subjectairflowen_GB
dc.subjecttemperatureen_GB
dc.subjecthumidityen_GB
dc.subjectsustainable agricultureen_GB
dc.subjecthorticultureen_GB
dc.subjectZagazigen_GB
dc.subjectEgypten_GB
dc.titleAnalysis of Inlet Configurations on the Microclimate Conditions of a Novel Standalone Agricultural Greenhouse for Egypt Using Computational Fluid Dynamicsen_GB
dc.typeArticleen_GB
dc.date.available2021-02-01T07:56:33Z
dc.identifier.issn2071-1050
dc.descriptionThis is the final version. Available from MDPI via the DOI in this record. en_GB
dc.identifier.journalSustainabilityen_GB
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2021-01-27
exeter.funder::British Council - Egypten_GB
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2021-01-27
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-01-31T13:05:07Z
refterms.versionFCDAM
refterms.dateFOA2021-02-01T07:56:41Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's licence is described as © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).