Show simple item record

dc.contributor.authorDraper, FC
dc.contributor.authorBaker, TR
dc.contributor.authorBaraloto, C
dc.contributor.authorChave, J
dc.contributor.authorCosta, F
dc.contributor.authorMartin, RE
dc.contributor.authorPennington, RT
dc.contributor.authorVicentini, A
dc.contributor.authorAsner, GP
dc.date.accessioned2021-03-04T11:02:48Z
dc.date.issued2020-09-07
dc.description.abstractTropical biomes are the most diverse plant communities on Earth, and quantifying this diversity at large spatial scales is vital for many purposes. As macroecological approaches proliferate, the taxonomic uncertainties in species occurrence data are easily neglected and can lead to spurious findings in downstream analyses. Here, we argue that technological approaches offer potential solutions, but there is no single silver bullet to resolve uncertainty in plant biodiversity quantification. Instead, we propose the use of artificial intelligence (AI) approaches to build a data-driven framework that integrates several data sources – including spectroscopy, DNA sequences, image recognition, and morphological data. Such a framework would provide a foundation for improving species identification in macroecological analyses while simultaneously improving the taxonomic process of species delimitation.en_GB
dc.description.sponsorshipEuropean Unionen_GB
dc.description.sponsorshipAgence Nationale de la Recherche (CEBA)en_GB
dc.identifier.citationVol. 35 (12), pp. 1100-1109en_GB
dc.identifier.doi10.1016/j.tree.2020.08.003
dc.identifier.grantnumber794973en_GB
dc.identifier.grantnumberANR-10- LABX-25-01en_GB
dc.identifier.urihttp://hdl.handle.net/10871/124999
dc.language.isoenen_GB
dc.publisherElsevier (Cell Press)en_GB
dc.rights.embargoreasonUnder embargo until 7 September 2021 in compliance with publisher policyen_GB
dc.rights© 2021. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dc.subjecttropical botanyen_GB
dc.subjectplant biodiversityen_GB
dc.subjecttechnologyen_GB
dc.subjectspectroscopyen_GB
dc.subjectDNAen_GB
dc.subjectartificial intelligenceen_GB
dc.titleQuantifying Tropical Plant Diversity Requires an Integrated Technological Approachen_GB
dc.typeArticleen_GB
dc.date.available2021-03-04T11:02:48Z
dc.identifier.issn0169-5347
dc.descriptionThis is the author accepted manuscript. the final version is available from Elsevier via the DOI in this recorden_GB
dc.identifier.journalTrends in Ecology and Evolutionen_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dcterms.dateAccepted2020
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2020-09-07
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-03-04T10:56:51Z
refterms.versionFCDAM
refterms.dateFOA2021-09-06T23:00:00Z
refterms.panelCen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2021. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  
Except where otherwise noted, this item's licence is described as © 2021. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/