Show simple item record

dc.contributor.authorCrowle, AP
dc.contributor.authorThies, PR
dc.date.accessioned2021-07-02T09:01:49Z
dc.date.issued2021-06-30
dc.description.abstractThe construction and installation engineering of floating offshore wind turbines is important to minimize schedules and costs. Floating offshore wind turbine substructures are an expanding sector within renewable power generation, offering an opportunity to deliver green energy, in new areas offshore. The floating nature of the substructures permits wind turbine placement in deep water locations. This paper investigates the construction and installation challenges for the various floating offshore wind types. It is concluded that priority areas for project management and design engineers minimising steel used in semi submersible construction, reducing the floating draft of Spars and for Tension Leg Platforms developing equipment for a safe installation. Specifically tailored design for construction and installation includes expanding the weather window in which these floating substructures can be fabricated, transported to and from offshore site and making mooring and electrical connection operations simpler. The simplification of construction methodology will reduce time spent offshore and minimise risks to installation equipment and personnel. The paper will include the best practice for ease of towing for offshore installation and the possible return to port for maintenance. The construction and installation process for a floating offshore wind turbine varies with substructure type and this will be developed in more detail in the paper. Floating offshore wind structures require an international collaboration of shipyards, ports and construction vessels, though to good project management. It is concluded that return to port for maintenance is possible for semi submersibles and barges whereas for Spars and TLP updated equipment is required to carry out maintenance offshore. In order to facilitate the construction and to minimize costs, the main aspects have to be considered i.e., the required construction vessel types, the distance from fit-out port to site and the weather restrictions.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.identifier.citation2021 International Conference on Mathematics, Modeling, Simulation, Optimization and Computation (MMSOC2021), 29-30 June 2021, Chengdu, Chinaen_GB
dc.identifier.grantnumberEP/S000747/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/126276
dc.language.isoenen_GB
dc.publisherInternational Conference on Mathematics, Modeling, Simulation, Optimization and Computationen_GB
dc.rightsCopyright © 2021 International Conference on Mathematics, Modeling, Simulation, Optimization and Computation (MMSOC2021)en_GB
dc.titleConstruction and installation engineering for floating wind turbinesen_GB
dc.typeConference proceedingsen_GB
dc.date.available2021-07-02T09:01:49Z
dc.descriptionThis is the author accepted manuscripten_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2021-06-04
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2021-06-04
rioxxterms.typeConference Paper/Proceeding/Abstracten_GB
refterms.technicalExceptionconferenceOutsideDefinition
refterms.technicalExceptionExplanationProceedings of this conference are not formally published.
refterms.dateFCD2021-07-01T17:27:02Z
refterms.versionFCDAM
refterms.dateFOA2021-07-02T09:06:21Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record