Combined Autonomous Surface Vehicles (ASV) and remotely operated underwater vehicles (ROV) inspection and intervention systems can contribute to future asset management of offshore renewable energy. This paper presents the design and performance of the winch system which couples the ASV and ROV and deploys/recovers the ROV. The ...
Combined Autonomous Surface Vehicles (ASV) and remotely operated underwater vehicles (ROV) inspection and intervention systems can contribute to future asset management of offshore renewable energy. This paper presents the design and performance of the winch system which couples the ASV and ROV and deploys/recovers the ROV. The hydrodynamic models and control algorithms are developed and solved with analytical and numerical approaches. The winch performance needs to meet a range of operational profiles, including i) ASV following/not following the ROV ii) winch operating in speed control iii) winch operating in tension control iv) varying ROV distance and depths targets. For a representative ASV/ROV configuration, the work determines the required umbilical length for different ROV targets and suitable winch speeds. The results show that the strategy where the ASV follows the ROV can reduce the umbilical tension, but conditions of compression should be carefully managed. The umbilical tension can also be decreased by tension control and shows to be very effective in larger sea states. This study also models the accidental limit case, where a malfunctioning ROV is recovered. The estimated increase of umbilical tension during the recovery stage of a malfunctioning ROV can thus be incorporated into the design calculations.