Show simple item record

dc.contributor.authorHao, F
dc.contributor.authorGao, J
dc.contributor.authorChen, J
dc.contributor.authorNasridinov, A
dc.contributor.authorMin, G
dc.date.accessioned2021-08-12T10:15:59Z
dc.date.issued2021-08-10
dc.description.abstractIdentifying the optimal groups of users that are closely connected and satisfy some ranking criteria from an attributed social network attracts significant attention from both academia and industry. Skyline query processing, a multicriteria decision-making optimized technique, is recently embedded into cohesive subgraphs mining in graphs/social networks. However, the existing studies cannot capture the fuzzy property of connections between users in social networks. To fill this gap, in this article, we formulate a novel model of the skyline (λ,k)-cliques over a fuzzy attributed social network and develop a formal concept analysis (FCA)-based skyline (λ,k)-cliques identification algorithm. Specifically, λ can be regarded as a quality control parameter for measuring the stability of the cohesive groups. Extensive experimental results conducted on three real-world datasets demonstrate the effectiveness of the skyline (λ,k)-clique model in a fuzzy attributed social network. Furthermore, an illustrative example is executed for revealing the usefulness of our model. It is expected that our proposed skyline (λ,k)-clique model can be widely used in various graph-based computational social systems, such as optimal team formation in crowdsourcing, and group recommendation in social networks.en_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.description.sponsorshipFundamental Research Funds for the Central Universitiesen_GB
dc.identifier.citationPublished online 10 August 2021en_GB
dc.identifier.doi10.1109/tcss.2021.3101152
dc.identifier.grantnumber840922en_GB
dc.identifier.grantnumberGK202103080en_GB
dc.identifier.urihttp://hdl.handle.net/10871/126750
dc.language.isoenen_GB
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_GB
dc.rights© 2021 IEEEen_GB
dc.subjectSocial networking (online)en_GB
dc.subjectComputational modelingen_GB
dc.subjectQuery processingen_GB
dc.subjectKnowledge engineeringen_GB
dc.subjectFormal concept analysisen_GB
dc.subjectComputer scienceen_GB
dc.subjectQuality controlen_GB
dc.subjectCliqueen_GB
dc.subjectfuzzy attributed social networken_GB
dc.subjectskylineen_GB
dc.titleSkyline (λ,k)-Cliques Identification From Fuzzy Attributed Social Networksen_GB
dc.typeArticleen_GB
dc.date.available2021-08-12T10:15:59Z
dc.descriptionThis is the author accepted manuscript. The final version is available from IEEE via the DOI in this recorden_GB
dc.identifier.eissn2329-924X
dc.identifier.journalIEEE Transactions on Computational Social Systemsen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
rioxxterms.funderNational Natural Science Foundation of Chinaen_GB
rioxxterms.identifier.project61702317en_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2021-08-10
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2021-08-12T10:12:16Z
refterms.versionFCDAM
refterms.dateFOA2021-08-12T10:16:10Z
refterms.panelBen_GB
rioxxterms.funder.projectb46c2fb1-96fc-4e6d-be34-0693ccc61afaen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record