Rapid blood acid-base regulation by European sea bass (Dicentrarchus labrax) in response to sudden exposure to high environmental CO2 (dataset)
Montgomery, D; Kwan, G; Davison, W; et al.Finlay, J; Berry, A; Simpson, S; Engelhard, G; Birchenough, S; Tresguerres, M; Wilson, R
Date: 17 January 2022
Dataset
Publisher
University of Exeter
Publisher DOI
Abstract
Fish in coastal ecosystems can be exposed to acute variations in CO2 of between 0.2-1 kPa CO2 (2,000 - 10,000 µatm). Coping with this environmental challenge will depend on the ability to rapidly compensate the internal acid-base disturbance caused by sudden exposure to high environmental CO2 (blood and tissue acidosis); however, studies ...
Fish in coastal ecosystems can be exposed to acute variations in CO2 of between 0.2-1 kPa CO2 (2,000 - 10,000 µatm). Coping with this environmental challenge will depend on the ability to rapidly compensate the internal acid-base disturbance caused by sudden exposure to high environmental CO2 (blood and tissue acidosis); however, studies about the speed of acid-base regulatory responses in marine fish are scarce. We observed that upon sudden exposure to ~1 kPa CO2, European sea bass (Dicentrarchus labrax) completely regulate erythrocyte intracellular pH within ~40 minutes, thus restoring haemoglobin-O2 affinity to pre-exposure levels. Moreover, blood pH returned to normal levels within ~2 hours, which is one of the fastest acid-base recoveries documented in any fish. This was achieved via a large upregulation of net acid excretion and accumulation of HCO3- in blood, which increased from ~4 to ~22 mM. While the abundance and intracellular localisation of gill Na+/K+-ATPase (NKA) and Na+/H+ exchanger 3 (NHE3) remained unchanged, the apical surface area of acid-excreting gill ionocytes doubled. This constitutes a novel mechanism for rapidly increasing acid excretion during sudden blood acidosis. Rapid acid-base regulation was completely prevented when the same high CO2 exposure occurred in seawater with experimentally reduced HCO3- and pH, likely because reduced environmental pH inhibited gill H+ excretion via NHE3. The rapid and robust acid-base regulatory responses identified will enable European sea bass to maintain physiological performance during large and sudden CO2 fluctuations that naturally occur in coastal environments.
Biosciences - old structure
Collections of Former Colleges
Item views 0
Full item downloads 0