dc.contributor.author | Böhning, D | |
dc.contributor.author | Martin, S | |
dc.contributor.author | Sangnawakij, P | |
dc.contributor.author | Jansen, K | |
dc.contributor.author | Böhning, W | |
dc.contributor.author | Holling, H | |
dc.date.accessioned | 2022-01-28T12:59:18Z | |
dc.date.issued | 2021-04-18 | |
dc.date.updated | 2022-01-28T11:32:22Z | |
dc.description.abstract | Abstract: Meta-analysis provides an integrated analysis and summary of the effects observed in k independent studies. The conventional analysis proceeds by first calculating a study-specific effect estimate, and then provides further analysis on the basis of the available k independent effect estimates associated with their uncertainty measures. Here we consider a setting where counts of events are available from k independent studies for a treatment and a control group. We suggest to model this situation with a study-specific Poisson regression model, and allow the study-specific parameters of the Poisson model to arise from a nonparametric mixture model. This approach then allows the estimation of the heterogeneity variance of the effect measure of interest in a nonparametric manner. A case study is used to illustrate the methodology throughout the paper. | en_GB |
dc.format.extent | 308-317 | |
dc.identifier.citation | Vol. 42, No. 2, pp. 308-317 | en_GB |
dc.identifier.doi | https://doi.org/10.1134/s1995080221020074 | |
dc.identifier.uri | http://hdl.handle.net/10871/128634 | |
dc.identifier | ORCID: 0000-0001-8746-0947 (Martin, Susan) | |
dc.language.iso | en | en_GB |
dc.publisher | Springer/Russian Academy of Sciences/Kazan Federal University | en_GB |
dc.rights.embargoreason | Under embargo until 18 April 2022 in compliance with publisher policy | en_GB |
dc.rights | Copyright © 2021, Pleiades Publishing, Ltd. | en_GB |
dc.subject | Heterogeneity Variance | en_GB |
dc.subject | Count Data Analysis | en_GB |
dc.subject | Nonparametric Mixture Models | en_GB |
dc.subject | Meta-Analysis | en_GB |
dc.subject | Rare Events | en_GB |
dc.title | Nonparametric estimation of effect heterogeneity in rare events meta-analysis: Bivariate, discrete mixture model | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2022-01-28T12:59:18Z | |
dc.identifier.issn | 1818-9962 | |
dc.description | This is the author accepted manuscript. The final version is available from Springer via the DOI in this record | en_GB |
dc.identifier.eissn | 1818-9962 | |
dc.identifier.journal | Lobachevskii Journal of Mathematics | en_GB |
dc.relation.ispartof | Lobachevskii Journal of Mathematics, 42(2) | |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | en_GB |
dcterms.dateAccepted | 2020-08-12 | |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2021-04-18 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2022-01-28T12:55:26Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2022-04-17T23:00:00Z | |
refterms.panel | A | en_GB |
refterms.dateFirstOnline | 2021-04-18 | |