Show simple item record

dc.contributor.authorWen, C
dc.contributor.authorLi, B
dc.contributor.authorDing, H
dc.contributor.authorAkrami, M
dc.contributor.authorZhang, H
dc.contributor.authorYang, Y
dc.date.accessioned2022-01-31T09:48:15Z
dc.date.issued2022-01-22
dc.date.updated2022-01-30T22:49:38Z
dc.description.abstractThe separation technology of carbon dioxide (CO2) is a key step to achieve high efficient carbon capture and storage targets. In the present study, we propose a new concept to remove CO2 from the offshore natural gas industry, which utilises the combined effect from nonequilibrium condensation phenomena in the supersonic flow and cyclonic separation process from swirling flows. The feasibility study of this concept is evaluated by using computational fluid dynamics modelling. The effect of thermodynamics properties on the phase change process in supersonic flows is analysed in detail. The results show that the supersonic flow can condense 28% CO2 in a liquid state from the main gas flow based on the real gas model. Nine orders of magnitude differences are observed between the mass generations due to the nucleation process and droplet growth process, which indicates that the droplet growth process contributes more significantly to the mass transfer during CO2 condensations. The ideal gas model both under-predicts the mass flow rate and the liquid fraction by 25% and 46% compared to the real gas model. This study demonstrates the potential application of the CO2 separation using the phase change behaviour in supersonic flows.en_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.format.extent118523-
dc.identifier.citationVol. 310, article 118523en_GB
dc.identifier.doihttps://doi.org/10.1016/j.apenergy.2022.118523
dc.identifier.grantnumber51876143en_GB
dc.identifier.urihttp://hdl.handle.net/10871/128653
dc.identifierORCID: 0000-0002-4445-1589 (Wen, Chuang)
dc.identifierScopusID: 36454182800 (Wen, Chuang)
dc.identifierResearcherID: I-5663-2016 (Wen, Chuang)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights.embargoreasonUnder embargo until 22 January 2023 in compliance with publisher policyen_GB
dc.rights© 2022 Elsevier Ltd. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dc.subjectThermodynamicsen_GB
dc.subjectCarbon dioxideen_GB
dc.subjectSeparationen_GB
dc.subjectCarbon captureen_GB
dc.subjectCondensationen_GB
dc.subjectCO2en_GB
dc.subjectCarbon emissionen_GB
dc.titleThermodynamics analysis of CO2 condensation in supersonic flows for the potential of clean offshore natural gas processingen_GB
dc.typeArticleen_GB
dc.date.available2022-01-31T09:48:15Z
dc.identifier.issn0306-2619
exeter.article-number118523
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.en_GB
dc.descriptionData Availability Statement: The research data supporting this publication are provided within this paper.en_GB
dc.identifier.journalApplied Energyen_GB
dc.relation.ispartofApplied Energy, 310
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dcterms.dateAccepted2022-01-06
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2022-01-22
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-01-31T09:45:45Z
refterms.versionFCDAM
refterms.dateFOA2023-01-22T00:00:00Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 Elsevier Ltd. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  
Except where otherwise noted, this item's licence is described as © 2022 Elsevier Ltd. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/