Show simple item record

dc.contributor.authorDimitriu, T
dc.contributor.authorKurilovich, E
dc.contributor.authorŁapińska, U
dc.contributor.authorSeverinov, K
dc.contributor.authorPagliara, S
dc.contributor.authorSzczelkun, MD
dc.contributor.authorWestra, ER
dc.date.accessioned2022-02-08T15:01:39Z
dc.date.issued2021-12-20
dc.date.updated2022-02-08T14:30:08Z
dc.description.abstractPhages impose strong selection on bacteria to evolve resistance against viral predation. Bacteria can rapidly evolve phage resistance via receptor mutation or using their CRISPR-Cas adaptive immune systems. Acquisition of CRISPR immunity relies on the insertion of a phage-derived sequence into CRISPR arrays in the bacterial genome. Using Pseudomonas aeruginosa and its phage DMS3vir as a model, we demonstrate that conditions that reduce bacterial growth rates, such as exposure to bacteriostatic antibiotics (which inhibit cell growth without killing), promote the evolution of CRISPR immunity. We demonstrate that this is due to slower phage development under these conditions, which provides more time for cells to acquire phage-derived sequences and mount an immune response. Our data reveal that the speed of phage development is a key determinant of the evolution of CRISPR immunity and suggest that use of bacteriostatic antibiotics can trigger elevated levels of CRISPR immunity in human-associated and natural environments.en_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.description.sponsorshipNatural Environment Research Council (NERC)en_GB
dc.description.sponsorshipMinistry of Science and Higher Education of the Russian Federationen_GB
dc.description.sponsorshipNational Institutes of Health (NIH)en_GB
dc.description.sponsorshipRussian Science Foundationen_GB
dc.format.extent31-40.e5
dc.format.mediumPrint-Electronic
dc.identifier.citationVol. 30(1), pp. 31–40.e1–e5en_GB
dc.identifier.doihttps://doi.org/10.1016/j.chom.2021.11.014
dc.identifier.grantnumberERC-2017-ADG-788405en_GB
dc.identifier.grantnumberERC-STG-2016-714478en_GB
dc.identifier.grantnumberNE/M018350/1en_GB
dc.identifier.grantnumber075-15-2019-1661en_GB
dc.identifier.grantnumberRO1 10407en_GB
dc.identifier.grantnumber19-74-20130en_GB
dc.identifier.urihttp://hdl.handle.net/10871/128734
dc.identifierORCID: 0000-0002-1604-2622 (Dimitriu, Tatiana)
dc.identifierORCID: 0000-0001-9796-1956 (Pagliara, Stefano)
dc.identifierORCID: 0000-0003-4396-0354 (Westra, Edze R)
dc.language.isoenen_GB
dc.publisherElsevier (Cell Press)en_GB
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pubmed/34932986en_GB
dc.relation.urlhttps://doi.org/10.17632/gbdfwg325y.1en_GB
dc.rights© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_GB
dc.subjectCRISPR-Cas immunityen_GB
dc.subjectantibioticsen_GB
dc.subjectgrowth rateen_GB
dc.subjectphage therapyen_GB
dc.subjectspacer acquisitionen_GB
dc.titleBacteriostatic antibiotics promote CRISPR-Cas adaptive immunity by enabling increased spacer acquisitionen_GB
dc.typeArticleen_GB
dc.date.available2022-02-08T15:01:39Z
dc.identifier.issn1931-3128
exeter.place-of-publicationUnited States
dc.descriptionThis is the final version. Available on open access from Cell Press via the DOI in this recorden_GB
dc.descriptionData and code availability: Source data are available at Mendeley Data: https://doi.org/10.17632/gbdfwg325y.1 This paper does not report original code. Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.en_GB
dc.identifier.eissn1934-6069
dc.identifier.journalCell Host Microbeen_GB
dc.relation.ispartofCell Host Microbe, 30(1)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2021-11-24
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2021-12-20
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-02-08T14:57:55Z
refterms.versionFCDVoR
refterms.dateFOA2022-02-08T15:03:52Z
refterms.panelAen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's licence is described as © 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).