Show simple item record

dc.contributor.authorWoods, C
dc.contributor.authorHedges, L
dc.contributor.authorEdsall, C
dc.contributor.authorBrooks-Pollock, E
dc.contributor.authorParton-Fenton, C
dc.contributor.authorMcKinley, T
dc.contributor.authorKeeling, M
dc.contributor.authorDanon, L
dc.date.accessioned2022-02-24T13:57:29Z
dc.date.issued2022-02-14
dc.date.updated2022-02-24T13:36:16Z
dc.description.abstractUnderstanding how disease spreads through populations is important when designing and implementing control measures. MetaWards implements a stochastic metapopulation model of disease transmission that enables geographical modelling of disease spread that can scale all the way from modelling local transmission up to full national-or international-scale outbreaks. It is built in Python and has a flexible plugin architecture to support complex scenario modelling. This enables the code to be adapted to model new situations and new control measures as they arise, e.g. emergence of new variants of disease, enaction of different types of movement restrictions, availability of different types of vaccines etc. It implements a userdefinable compartmental transmission model, such as an SIR model, that can be extended multi-dimensionally via multiple demographics or sub-populations, and multiple geographical regions. Models can be constructed from the various sources of movement and demographic data that are available, and are accelerated via Cython (Behnel et al., 2020), OpenMP, Scoop (Hold & Gagnon, 2019) and MPI4Py (Dalcin & Fang, 2021) to scale efficiently from running on personal laptops to large supercomputers. Python, R and command line interfaces and a complete set of tutorials empower researchers to adapt their models to a variety of scenarios.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipMedical Research Council (MRC)en_GB
dc.description.sponsorshipAlan Turing Instituteen_GB
dc.description.sponsorshipPfizeren_GB
dc.format.extent3914-
dc.identifier.citationVol. 7(70), article 3914en_GB
dc.identifier.doihttps://doi.org/10.21105/joss.03914
dc.identifier.grantnumberEP/N018591/1en_GB
dc.identifier.grantnumberEP/V051555/1en_GB
dc.identifier.grantnumberMR/V038613/1en_GB
dc.identifier.grantnumberMC/PC/19067en_GB
dc.identifier.grantnumberEP/N510129/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/128876
dc.identifierORCID: 0000-0002-9485-3236 (McKinley, Trevelyan)
dc.language.isoenen_GB
dc.publisherOpen Journalsen_GB
dc.relation.urlhttps://github.com/metawards/MetaWardsen_GB
dc.rights© 2022 The author(s). Open access under a Creative Commons Attribution 4.0 International Licenseen_GB
dc.subjectepidemiologyen_GB
dc.subjectepidemicsen_GB
dc.subjectsir-modelen_GB
dc.subjectcompartmental transmission modelen_GB
dc.subjectcoviden_GB
dc.subjectpythonen_GB
dc.subjectcythonen_GB
dc.titleMetaWards: A flexible metapopulation framework for modelling disease spreaden_GB
dc.typeArticleen_GB
dc.date.available2022-02-24T13:57:29Z
dc.identifier.issn2475-9066
dc.descriptionThis is the final version. Available on open access from Open Journals via the DOI in this recorden_GB
dc.descriptionThe software is available at https://github.com/metawards/MetaWardsen_GB
dc.identifier.eissn2475-9066
dc.identifier.journalJournal of Open Source Softwareen_GB
dc.relation.ispartofThe Journal of Open Source Software, 7(70)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2022
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-02-14
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-02-24T13:52:25Z
refterms.versionFCDVoR
refterms.dateFOA2022-02-24T13:59:41Z
refterms.panelAen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 The author(s). Open access under a Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's licence is described as © 2022 The author(s). Open access under a Creative Commons Attribution 4.0 International License