Show simple item record

dc.contributor.authorBrückerhoff-Plückelmann, F
dc.contributor.authorFeldmann, J
dc.contributor.authorGehring, H
dc.contributor.authorZhou, W
dc.contributor.authorWright, CD
dc.contributor.authorBhaskaran, H
dc.contributor.authorPernice, W
dc.date.accessioned2022-03-01T09:48:19Z
dc.date.issued2022-02-11
dc.date.updated2022-02-28T21:14:10Z
dc.description.abstractThe integration of artificial intelligence (AI) systems in the daily life greatly increases the amount of data generated and processed. In addition to the large computational power required, the hardware needs to be compact and energy efficient. One promising approach to fulfill those requirements is phase-change material based photonic neuromorphic computing that enables in-memory computation and a high degree of parallelization. In the following, we present an optimized layout of a photonic tensor core (PTC) which is designed to perform real valued matrix vector multiplications and operates at telecommunication wavelengths. We deploy the well-studied phase-change material Ge2Sb2Te5 (GST) as an optical attenuator to perform single positive valued multiplications. In order to generalize the multiplication to arbitrary real factors, we develop a novel symmetric multiplication unit which directly includes a reference-computation branch. The variable GST attenuator enables a modulation depth of 5 dB over a wavelength range of 100 nm with a wavelength dependency below 0.8 dB. The passive photonic circuit itself ensures equal coupling to the main-computation and reference-computation branch over the complete wavelength range. For the first time, we integrate wavelength multiplexers (MUX) together with a photonic crossbar array on-chip, paving the way towards fully integrated systems. The MUX are crucial for the PTC since they enable multiple computational channels in a single photonic crossbar array. We minimize the crosstalk between the channels by designing Bragg scattering based MUX. By cascading, we achieve an extinction ratio larger than 61 dB while the insertion loss is below 1 dB.en_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG)en_GB
dc.description.sponsorshipEuropean Research Council (ERC)en_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.description.sponsorshipStudienstiftung des deutschen Volkesen_GB
dc.identifier.citationPublished online 11 February 2022en_GB
dc.identifier.doihttps://doi.org/10.1515/nanoph-2021-0752
dc.identifier.grantnumberCRC 1459en_GB
dc.identifier.grantnumber724707en_GB
dc.identifier.grantnumber101017237en_GB
dc.identifier.grantnumber780848en_GB
dc.identifier.urihttp://hdl.handle.net/10871/128909
dc.identifierORCID: 0000-0003-4087-7467 (Wright, C David)
dc.language.isoenen_GB
dc.publisherDe Gruyteren_GB
dc.rights© 2022 Frank Brückerhoff-Plückelmann et al., published by De Gruyter, Berlin/Boston. Open access. This work is licensed under the Creative Commons Attribution 4.0 International License.en_GB
dc.subjectneuromorphic computingen_GB
dc.subjectphase change photonicsen_GB
dc.subjectwavelength division multiplexingen_GB
dc.titleBroadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexersen_GB
dc.typeArticleen_GB
dc.date.available2022-03-01T09:48:19Z
dc.identifier.issn2192-8606
dc.descriptionThis is the final version. Available on open access from De Gruyter via the DOI in this recorden_GB
dc.identifier.eissn2192-8614
dc.identifier.journalNanophotonicsen_GB
dc.relation.ispartofNanophotonics, 0(0)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2022-01-31
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-02-11
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-03-01T09:44:35Z
refterms.versionFCDVoR
refterms.dateFOA2022-03-01T09:49:27Z
refterms.panelBen_GB
refterms.dateFirstOnline2022-02-11


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 Frank Brückerhoff-Plückelmann et al., published by De Gruyter, Berlin/Boston. Open access. This work is licensed under the Creative Commons Attribution 4.0 International License.
Except where otherwise noted, this item's licence is described as © 2022 Frank Brückerhoff-Plückelmann et al., published by De Gruyter, Berlin/Boston. Open access. This work is licensed under the Creative Commons Attribution 4.0 International License.