Show simple item record

dc.contributor.authorXu, Y
dc.contributor.authorZhang, J
dc.contributor.authorBrownjohn, J
dc.date.accessioned2022-03-31T09:44:24Z
dc.date.issued2021-05-07
dc.date.updated2022-03-31T07:52:09Z
dc.description.abstractVision-based displacement measurement receives increasing attention on non-contact bridge monitoring while it faces challenges in long-time field applications due to the presence of environmental variations. To overcome this issue, this study proposes a novel distraction-free displacement measurement approach by integrating deep learning-based Siamese tracker with correlation-based template matching. The Siamese tracker used applies deep feature representations and learned similarity measures for image matching and also considers adaptive template update with time. Since the estimated bounding boxes by the Siamese tracker have size changes within frame sequences, a correction step is added to remove the centroid drifts between the template and the predicted target regions using correlation-based template matching. The proposed method is validated first in an indoor test and then implemented in monitoring tests on a short-span footbridge and a long-span road bridge, demonstrating its potential to handle challenging scenarios including partial occlusion, illumination changes, background variations and shade effects.en_GB
dc.description.sponsorshipNational Key R&D Program of Chinaen_GB
dc.description.sponsorshipJiangsu Natural Science Foundationen_GB
dc.format.extent109506-
dc.identifier.citationVol. 179, article 109506en_GB
dc.identifier.doihttps://doi.org/10.1016/j.measurement.2021.109506
dc.identifier.grantnumber2019YFC151110en_GB
dc.identifier.grantnumberBK20190372en_GB
dc.identifier.urihttp://hdl.handle.net/10871/129217
dc.identifierORCID: 0000-0003-4946-5901 (Brownjohn, James)
dc.identifierScopusID: 57204495255 (Brownjohn, James)
dc.language.isoenen_GB
dc.publisherElsevier / International Measurement Confederation (IMEKO)en_GB
dc.rights.embargoreasonUnder embargo until 7 May 2023 in compliance with publisher policyen_GB
dc.rights© 2021 Elsevier Ltd. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dc.subjectDisplacement measurementen_GB
dc.subjectVision-based methoden_GB
dc.subjectSiamese networken_GB
dc.subjectTemplate matchingen_GB
dc.subjectBackground variationsen_GB
dc.titleAn accurate and distraction-free vision-based structural displacement measurement method integrating Siamese network based tracker and correlation-based template matchingen_GB
dc.typeArticleen_GB
dc.date.available2022-03-31T09:44:24Z
dc.identifier.issn0263-2241
exeter.article-number109506
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recorden_GB
dc.identifier.eissn1873-412X
dc.identifier.journalMeasurementen_GB
dc.relation.ispartofMeasurement, 179
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dcterms.dateAccepted2021-05-03
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2021-05-07
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-03-31T09:40:54Z
refterms.versionFCDAM
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2021 Elsevier Ltd. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  
Except where otherwise noted, this item's licence is described as © 2021 Elsevier Ltd. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/