Show simple item record

dc.contributor.authorZhu, Y-C
dc.contributor.authorAu, S-K
dc.contributor.authorBrownjohn, JMW
dc.date.accessioned2022-03-31T13:02:53Z
dc.date.issued2018-11-26
dc.date.updated2022-03-31T11:13:41Z
dc.description.abstractIn full-scale ambient vibration tests, challenging situations exist where in the frequency domain the measured data is dominated by other modes that ‘bury’ the subject mode of interest. In this case, conventional modal identification methods are either not applicable or inefficient to apply. This paper proposes a Bayesian frequency domain method for identifying the modal properties of such buried modes. The buried-mode situation is modelled and computation difficulties are addressed, leading to an efficient algorithm for modal identification in such challenging situation. The proposed method is validated by synthetic data examples. The associated uncertainty of the identified modal parameters are investigated. The method is also applied to identifying the buried modes of a long-span suspension bridge, demonstrating its utility with challenging modes encountered in field test data.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.format.extent246-263
dc.identifier.citationVol. 121, pp. 246-263en_GB
dc.identifier.doihttps://doi.org/10.1016/j.ymssp.2018.11.022
dc.identifier.grantnumberEP/N017897/1en_GB
dc.identifier.grantnumberEP/N017803en_GB
dc.identifier.urihttp://hdl.handle.net/10871/129226
dc.identifierORCID: 0000-0003-4946-5901 (Brownjohn, James Mark William)
dc.identifierScopusID: 57204495255 (Brownjohn, James Mark William)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights© 2018 Elsevier Ltd. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dc.subjectAmbient dataen_GB
dc.subjectBayesian methodsen_GB
dc.subjectBuried modeen_GB
dc.subjectOperational modal analysisen_GB
dc.titleBayesian operational modal analysis with buried modesen_GB
dc.typeArticleen_GB
dc.date.available2022-03-31T13:02:53Z
dc.identifier.issn0888-3270
dc.descriptionThis is the author accepted manuscript. The final version is available form Elsevier via the DOI in this recorden_GB
dc.identifier.eissn1096-1216
dc.identifier.journalMechanical Systems and Signal Processingen_GB
dc.relation.ispartofMechanical Systems and Signal Processing, 121
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dcterms.dateAccepted2018-11-14
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2018-11-26
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-03-31T13:00:22Z
refterms.versionFCDAM
refterms.dateFOA2022-03-31T13:03:12Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2018 Elsevier Ltd. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  
Except where otherwise noted, this item's licence is described as © 2018 Elsevier Ltd. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/