Self-powered and Self-configurable Active Rectifier Using Low Voltage Controller for Wide Output Range Energy Harvesters
Chew, Z; Kuang, Y; Zhu, M
Date: 7 April 2022
Article
Journal
IEEE Transactions on Power Electronics
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Publisher DOI
Abstract
This paper presents a self-configurable and selfpowered active rectifier that operates from 0.25–20 V for energy harvesting applications. The proposed circuit self-startups from a low voltage using a charge pump and amplifies the voltage with a voltage doubler (VD) topology to provide succeeding circuits such as boost converters with ...
This paper presents a self-configurable and selfpowered active rectifier that operates from 0.25–20 V for energy harvesting applications. The proposed circuit self-startups from a low voltage using a charge pump and amplifies the voltage with a voltage doubler (VD) topology to provide succeeding circuits such as boost converters with a higher voltage. When the voltage of the energy harvester reaches a high threshold, the circuit switches its topology to a full-wave rectifier (FR) that does not amplify the voltage. The start-up circuit can limit its voltage intake to prevent boosting the high voltage, which may damage the whole circuit. Comparators with a maximum operating voltage of 5.5 V used in the implementation of the rectifier are protected by a diode and resistor based circuit. A piezoelectric energy harvester (PEH) that has a wide open-circuit voltage of 0.4–15 V under the acceleration of 0.04–0.3 g was used to test the circuit. The experiment results showed the rectifier can startup from 0.25 V and switch its topology according to the PEH voltage. The voltage and power conversion efficiencies are over 90% in most cases.
Engineering
Faculty of Environment, Science and Economy
Item views 0
Full item downloads 0