Show simple item record

dc.contributor.authorZhang, X
dc.contributor.authorZhao, Y
dc.contributor.authorMin, G
dc.contributor.authorMiao, W
dc.contributor.authorHuang, H
dc.contributor.authorMa, Z
dc.date.accessioned2022-04-11T11:13:58Z
dc.date.issued2022-04-19
dc.date.updated2022-04-11T11:01:19Z
dc.description.abstractAs an indispensable part of modern critical infrastructures, cameras deployed at strategic places and prime junctions in an intelligent transportation system (ITS), can help operators in observing traffic flow, identifying any emergency situation, or making decisions regarding road congestion without arriving on the scene. However, these cameras are usually equipped with heterogeneous and turbulent networks, making the realtime smooth playback of traffic monitoring videos with high quality a grand challenge. In this paper, we propose a light-weight Deep Reinforcement Learning (DRL) based approach, namely sRC-C (smart bitRate Control with a Continuous action space), to enhance the quality of realtime traffic monitoring by adjusting the video bitrate adaptively. Distinguished from the existing bitrate adjusting approaches, sRC-C can overcome the bias incurred by deterministic discretization of candidate bitrates by adjusting the video bitrate with more f ine-grained control from a continuous action space, thus significantly improving the Quality-of-Service (QoS). With carefully designed state space and neural network model, sRC-C can be implemented on cameras with scarce resources to support real-time live video streaming with low inference time. Extensive experiments show that sRC-C can reduce the frame loss counts and hold time by 24% and 15.5%, respectively, even with comparable bandwidth utilization. Meanwhile, compared to the-state-of-art approaches, sRC-C can improve the QoS by 30.4%.en_GB
dc.description.sponsorshipNational Key Research and Development Program of Chinaen_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.description.sponsorshipLeading Technology of Jiangsu Basic Research Planen_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipChongqing Key Laboratory of Digital Cinema Art Theory and Technologyen_GB
dc.identifier.citationPublished online 19 April 2022en_GB
dc.identifier.doi10.1145/3529511
dc.identifier.grantnumber2018YFB2100804en_GB
dc.identifier.grantnumber898588en_GB
dc.identifier.grantnumber101008297en_GB
dc.identifier.grantnumberBK20192003en_GB
dc.identifier.grantnumber92067206en_GB
dc.identifier.grantnumber2021KF01en_GB
dc.identifier.urihttp://hdl.handle.net/10871/129341
dc.publisherAssociation for Computing Machinery (ACM)en_GB
dc.rights© 2022 Association for Computing Machinery.
dc.subjectTraffic monitoringen_GB
dc.subjectvideo ingestionen_GB
dc.subjectbitrate controlen_GB
dc.subjectdeep reinforcement learningen_GB
dc.titleIntelligent Video Ingestion for Real-time Traffic Monitoringen_GB
dc.typeArticleen_GB
dc.date.available2022-04-11T11:13:58Z
dc.identifier.issn1550-4867
dc.descriptionThis is the author accepted manuscript. The final version is available from ACM via the DOI in this recorden_GB
dc.identifier.journalACM Transactions on Sensor Networksen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2022-03-29
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2022-03-29
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-04-11T11:01:22Z
refterms.versionFCDAM
refterms.dateFOA2022-04-26T14:07:13Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record