Show simple item record

dc.contributor.authorCunliffe, AM
dc.contributor.authorAnderson, K
dc.contributor.authorBoschetti, F
dc.contributor.authorBrazier, RE
dc.contributor.authorGraham, HA
dc.contributor.authorMyers‐Smith, IH
dc.contributor.authorAstor, T
dc.contributor.authorBoer, MM
dc.contributor.authorCalvo, LG
dc.contributor.authorClark, PE
dc.contributor.authorCramer, MD
dc.contributor.authorEncinas‐Lara, MS
dc.contributor.authorEscarzaga, SM
dc.contributor.authorFernández‐Guisuraga, JM
dc.contributor.authorFisher, AG
dc.contributor.authorGdulová, K
dc.contributor.authorGillespie, BM
dc.contributor.authorGriebel, A
dc.contributor.authorHanan, NP
dc.contributor.authorHanggito, MS
dc.contributor.authorHaselberger, S
dc.contributor.authorHavrilla, CA
dc.contributor.authorHeilman, P
dc.contributor.authorJi, W
dc.contributor.authorKarl, JW
dc.contributor.authorKirchhoff, M
dc.contributor.authorKraushaar, S
dc.contributor.authorLyons, MB
dc.contributor.authorMarzolff, I
dc.contributor.authorMauritz, ME
dc.contributor.authorMcIntire, CD
dc.contributor.authorMetzen, D
dc.contributor.authorMéndez‐Barroso, LA
dc.contributor.authorPower, SC
dc.contributor.authorProšek, J
dc.contributor.authorSanz‐Ablanedo, E
dc.contributor.authorSauer, KJ
dc.contributor.authorSchulze‐Brüninghoff, D
dc.contributor.authorŠímová, P
dc.contributor.authorSitch, S
dc.contributor.authorSmit, JL
dc.contributor.authorSteele, CM
dc.contributor.authorSuárez‐Seoane, S
dc.contributor.authorVargas, SA
dc.contributor.authorVillarreal, M
dc.contributor.authorVisser, F
dc.contributor.authorWachendorf, M
dc.contributor.authorWirnsberger, H
dc.contributor.authorWojcikiewicz, R
dc.date.accessioned2022-04-12T10:56:00Z
dc.date.issued2021-07-07
dc.date.updated2022-04-12T08:38:40Z
dc.description.abstractNon-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low-stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave-one-out cross-validation of 3.9%. Biomass per-unit-of-height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1–10 ha−1. Photogrammetric approaches could provide much-needed information required to calibrate and validate the vegetation models and satellite-derived biomass products that are essential to understand vulnerable and understudied non-forested ecosystems around the globe.en_GB
dc.format.extent57-71
dc.identifier.citationVol. 8(1), pp. 57-71en_GB
dc.identifier.doihttps://doi.org/10.1002/rse2.228
dc.identifier.urihttp://hdl.handle.net/10871/129362
dc.identifierORCID: 0000-0002-8346-4278 (Cunliffe, Andrew M)
dc.identifierORCID: 0000-0002-3289-2598 | 0000-0003-3695-209X (Anderson, Karen)
dc.identifierScopusID: 55455157700 (Anderson, Karen)
dc.identifierResearcherID: ABC-3524-2021 (Anderson, Karen)
dc.identifierORCID: 0000-0002-8715-0399 (Brazier, Richard E)
dc.identifierORCID: 0000-0001-9451-5010 (Graham, Hugh A)
dc.identifierORCID: 0000-0003-1821-8561 (Sitch, Stephen)
dc.identifierScopusID: 6603113016 (Sitch, Stephen)
dc.identifierResearcherID: F-8034-2015 (Sitch, Stephen)
dc.language.isoenen_GB
dc.publisherWileyen_GB
dc.relation.urlhttps://doi.org/10.5285/1ec13364-cbc6-4ab5-a147-45a103853424en_GB
dc.relation.urlhttps://doi.org/10.5281/zenodo.4783021en_GB
dc.rights© 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_GB
dc.subjectCanopy height modelen_GB
dc.subjectdroneen_GB
dc.subjectfine spatial resolution remote sensingen_GB
dc.subjectplant heighten_GB
dc.subjectstructure-from-motion photogrammetryen_GB
dc.subjectUAVen_GB
dc.titleGlobal application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non‐forest ecosystemsen_GB
dc.typeArticleen_GB
dc.date.available2022-04-12T10:56:00Z
dc.identifier.issn2056-3485
dc.descriptionThis is the final version. Available on open access from Wiley via the DOI in this recorden_GB
dc.descriptionData Availability Statement: The data collected for this publication, including aerial images, marker and plot coordinates and dry sample weights, as well as site and survey metadata, are available from the NERC Environmental Information Data Centre <https://doi.org/10.5285/1ec13364-cbc6-4ab5-a147-45a103853424>. Code for photogrammetric processing and statistical analysis is available at Zenodo <https://doi.org/10.5281/zenodo.4783021>en_GB
dc.identifier.eissn2056-3485
dc.identifier.journalRemote Sensing in Ecology and Conservationen_GB
dc.relation.ispartofRemote Sensing in Ecology and Conservation, 8(1)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2021-06-07
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2021-07-07
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-04-12T10:53:42Z
refterms.versionFCDVoR
refterms.dateFOA2022-04-12T10:56:17Z
refterms.panelCen_GB
refterms.dateFirstOnline2021-07-07


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's licence is described as © 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.