Show simple item record

dc.contributor.authorCohen, ZD
dc.contributor.authorDeRubeis, RJ
dc.contributor.authorHayes, R
dc.contributor.authorWatkins, ER
dc.contributor.authorLewis, G
dc.contributor.authorByng, R
dc.contributor.authorByford, S
dc.contributor.authorCrane, C
dc.contributor.authorKuyken, W
dc.contributor.authorDalgleish, T
dc.contributor.authorSchweizer, S
dc.date.accessioned2022-05-13T12:19:09Z
dc.date.issued2022-04-29
dc.date.updated2022-05-13T11:39:13Z
dc.description.abstractDepression is highly recurrent, even following successful pharmacological and/or psychological intervention. We aimed to develop clinical prediction models to inform adults with recurrent depression choosing between antidepressant medication (ADM) maintenance or switching to mindfulness-based cognitive therapy (MBCT). Using previously published data (N = 424), we constructed prognostic models using elastic-net regression that combined demographic, clinical, and psychological factors to predict relapse at 24 months under ADM or MBCT. Only the ADM model (discrimination performance: area under the curve [AUC] = .68) predicted relapse better than baseline depression severity (AUC = .54; one-tailed DeLong’s test: z = 2.8, p = .003). Individuals with the poorest ADM prognoses who switched to MBCT had better outcomes compared with individuals who maintained ADM (48% vs. 70% relapse, respectively; superior survival times, z = −2.7, p = .008). For individuals with moderate to good ADM prognoses, both treatments resulted in similar likelihood of relapse. If replicated, the results suggest that predictive modeling can inform clinical decision-making around relapse prevention in recurrent depression.en_GB
dc.description.sponsorshipNational Institute for Health Researchen_GB
dc.description.sponsorshipMedical Research Councilen_GB
dc.description.sponsorshipWellcome Trusten_GB
dc.description.sponsorshipMQ Foundationen_GB
dc.description.sponsorshipWellcome Trusten_GB
dc.description.sponsorshipWellcome Trusten_GB
dc.description.sponsorshipNational Institute for Health Researchen_GB
dc.format.extent216770262210768-
dc.identifier.citationPublished online 29 April 2022en_GB
dc.identifier.doihttps://doi.org/10.1177/21677026221076832
dc.identifier.grantnumber08/56/01en_GB
dc.identifier.grantnumberSUAG/043 G101400en_GB
dc.identifier.grantnumber209127/ Z/17/Zen_GB
dc.identifier.grantnumberMQ14PM_27en_GB
dc.identifier.grantnumber104908/Z/14/Zen_GB
dc.identifier.grantnumber107496/Z/15/Zen_GB
dc.identifier.urihttp://hdl.handle.net/10871/129607
dc.identifierORCID: 0000-0001-7525-322X (Hayes, Rachel)
dc.language.isoenen_GB
dc.publisherSAGE Publications / Association for Psychological Scienceen_GB
dc.rights© The Author(s) 2022. This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).en_GB
dc.subjectantidepressant medicationen_GB
dc.subjectdepressionen_GB
dc.subjectmindfulness-based cognitive therapyen_GB
dc.subjectprecision medicineen_GB
dc.subjectrelapse preventionen_GB
dc.titleThe Development and internal evaluation of a predictive model to identify for whom mindfulness-based cognitive therapy offers superior relapse prevention for recurrent depression versus maintenance antidepressant medicationen_GB
dc.typeArticleen_GB
dc.date.available2022-05-13T12:19:09Z
dc.identifier.issn2167-7026
dc.descriptionThis is the final version. Available from SAGE Publications via the DOI in this record. en_GB
dc.identifier.eissn2167-7034
dc.identifier.journalClinical Psychological Scienceen_GB
dc.relation.ispartofClinical Psychological Science
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2022-01-11
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-04-29
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-05-13T12:06:32Z
refterms.versionFCDVoR
refterms.dateFOA2022-05-13T12:19:15Z
refterms.panelAen_GB
refterms.dateFirstOnline2022-04-29


Files in this item

This item appears in the following Collection(s)

Show simple item record

© The Author(s) 2022. This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Except where otherwise noted, this item's licence is described as © The Author(s) 2022. This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).