Show simple item record

dc.contributor.authorRosin, TR
dc.contributor.authorKapelan, Z
dc.contributor.authorKeedwell, E
dc.contributor.authorRomano, M
dc.date.accessioned2022-06-06T10:43:22Z
dc.date.issued2022-03-02
dc.date.updated2022-03-29T08:58:37Z
dc.description.abstractBlockages are a major issue for wastewater utilities around the world, causing loss of service, environmental pollution, and significant clean-up costs. Increasing telemetry in combined sewer overflows (CSOs) provides the opportunity for near real-time data-driven modelling of wastewater networks. This paper presents a novel methodology, designed to detect blockages and other unusual events in the proximity of CSO chambers in near real-time. The methodology utilises an evolutionary artificial neural network (EANN) model for short-term CSO level predictions and statistical process control (SPC) techniques to analyse unusual level behaviour. The methodology was evaluated on historic blockage events from several CSOs in the UK and was demonstrated to detect blockage events quickly and reliably, with a low number of false alarms.en_GB
dc.identifier.citationVol. 24 (2), pp. 259–273en_GB
dc.identifier.doihttps://doi.org/10.2166/hydro.2022.036
dc.identifier.urihttp://hdl.handle.net/10871/129843
dc.identifierORCID: 0000-0002-8956-3058 (Rosin, TR)
dc.identifierORCID: 0000-0003-3650-6487 (Keedwell, E)
dc.identifierScopusID: 8367205700 (Keedwell, E)
dc.language.isoenen_GB
dc.publisherIWA Publishingen_GB
dc.rights© 2022 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_GB
dc.subjectblockage detectionen_GB
dc.subjectcombined sewer overflowen_GB
dc.subjectevolutionary artificial neural networken_GB
dc.subjectradar rainfall nowcastsen_GB
dc.subjectstatistical process controlen_GB
dc.titleNear real-time detection of blockages in the proximity of combined sewer overflows using evolutionary ANNs and statistical process controlen_GB
dc.typeArticleen_GB
dc.date.available2022-06-06T10:43:22Z
dc.identifier.issn1464-7141
dc.descriptionThis is the final version. Available on open access from IWA Publishing via the DOI in this recorden_GB
dc.descriptionData availability statement: Data cannot be made publicly available; readers should contact the corresponding author for details.en_GB
dc.identifier.eissn1465-1734
dc.identifier.journalJournal of Hydroinformaticsen_GB
dc.relation.ispartofJournal of Hydroinformatics
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dcterms.dateAccepted2022-02-18
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-03-02
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-06-06T10:40:58Z
refterms.versionFCDVoR
refterms.dateFOA2022-06-06T10:43:27Z
refterms.panelBen_GB
refterms.dateFirstOnline2022-03-02


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Except where otherwise noted, this item's licence is described as © 2022 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/).