Show simple item record

dc.contributor.authorTang, Z
dc.contributor.authorCao, G
dc.contributor.authorJiang, C
dc.contributor.authorHe, J
dc.contributor.authorLoh, A
dc.contributor.authorWang, Z
dc.contributor.authorZhao, J
dc.contributor.authorLi, X
dc.contributor.authorLai, Q
dc.contributor.authorLiang, Y
dc.date.accessioned2022-07-11T15:12:44Z
dc.date.issued2022-07-19
dc.date.updated2022-07-11T14:37:25Z
dc.description.abstract2D imidazole MOFs are considered to be ideal carbon precursors for oxygen reduction reaction owing to their adjustable ligand components and durable coordination mode. Due to the massive electron delocalization in the lamella, the conjugative effect among 2D MOFs layers immensely restrict the exposure of catalytic sites after carbonization, which makes decoupling layer extremely important on the premise of ensuring activity. Herein, atomic thickness ultra-thin zinc-imidazole MOFs precursor were fabricated through bottom-up ligand regulated strategy to achieve the aim of lamellar decoupling. The introduction of heterologous ligands excite stable delocalized electrons, resulting in decreasing interlayer force of 2D zinc-imidazole MOFs precursor. Subsequent salt template-supported ammonia pyrolysis assisted the MOFs-derived carbon sheets to grow along the transverse direction and optimize pore size distribution as well as doping nitrogen type. The MOFsderived carbon sheets demonstrated increasing mesopores and fringe graphitic N which could significantly promote the mass transfer and electron transfer speed during oxygen reduction reaction. Additionally, the obtained ultra-thin carbon delivered outstanding onset potential (0.98 V vs. RHE) and durability (retaining 91% initial current after 12000s of operation), showing tremendous commercial prospects in sustainable energy.en_GB
dc.description.sponsorshipNational Science Foundation of Chinaen_GB
dc.description.sponsorshipNatural Science Foundation of Jiangsu Provinceen_GB
dc.identifier.citationPublished online 19 July 2022en_GB
dc.identifier.doi10.1039/D2NR02895F
dc.identifier.grantnumber21771107en_GB
dc.identifier.grantnumber21902077en_GB
dc.identifier.grantnumberBK20190381en_GB
dc.identifier.grantnumberBK20201287en_GB
dc.identifier.urihttp://hdl.handle.net/10871/130238
dc.identifierORCID: 0000-0003-4450-4617 (Li, Xiaohong)
dc.language.isoenen_GB
dc.publisherRoyal Society of Chemistryen_GB
dc.rights.embargoreasonUnder embargo until 19 July 2023 in compliance with publisher policyen_GB
dc.rights© 2022 The Royal Society of Chemistry
dc.titleDecoupling Layer Metal-Organic-Frameworks via Ligand Regulation to Achieving Ultra-Thin Carbon Nanosheets for Oxygen Reduction Electrocatalysisen_GB
dc.typeArticleen_GB
dc.date.available2022-07-11T15:12:44Z
dc.identifier.issn2040-3372
dc.descriptionThis is the author accepted manuscript. The final version is available from the Royal Society of Chemistry via the DOI in tis recorden_GB
dc.identifier.journalNanoscaleen_GB
dc.relation.ispartofNanoscale
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2022-07-07
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2022-07-07
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-07-11T14:37:29Z
refterms.versionFCDAM
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record