Show simple item record

dc.contributor.authorZhou, W
dc.contributor.authorFarmakidis, N
dc.contributor.authorLi, X
dc.contributor.authorTan, J
dc.contributor.authorAggarwal, S
dc.contributor.authorFeldmann, J
dc.contributor.authorBrückerhoff-Plückelmann, F
dc.contributor.authorWright, CD
dc.contributor.authorPernice, WHP
dc.contributor.authorBhaskaran, H
dc.date.accessioned2022-07-27T08:48:20Z
dc.date.issued2022-04-27
dc.date.updated2022-07-26T16:33:54Z
dc.description.abstractNonvolatile photonic memory cells are basic building blocks for neuromorphic hardware enabling the realization of all-optical synapses and artificial neurons. These devices commonly exploit chalcogenide phase-change materials, which are evanescently coupled to photonic waveguides, and provide fast write/erase speeds and large storage capacity. Here, we report for the first time the programming of a nonvolatile photonic memory cell based on Ag3In4Sb76Te17 (AIST) which is capable of mimicking biphasic synapses. We evaluate the underlying mechanism of biphasic behavior of AIST cells based on numerical simulations and correlate to experimental findings. Switching dynamics demonstrate enhanced performance with a post-excitation dead time as short as 12.8 ns. Based on AIST double cells, we demonstrate reversible multilevel switching between 45 unique synaptic weights for long-term depression (LTD) and long-term potentiation (LTP). The observed biphasic programming and excellent switching performance render AIST-based photonic memory cells promising for artificial neural networks and neuromorphic photonic computing hardware.en_GB
dc.description.sponsorshipEuropean Union’s Horizon 2020en_GB
dc.format.extent2100487-
dc.identifier.citationPublished online 27 April 2022en_GB
dc.identifier.doihttps://doi.org/10.1002/pssr.202100487
dc.identifier.grantnumber780848en_GB
dc.identifier.urihttp://hdl.handle.net/10871/130404
dc.identifierORCID: 0000-0003-4087-7467 (Wright, C David)
dc.language.isoenen_GB
dc.publisherWileyen_GB
dc.rights© 2022 The Authors. physica status solidi (RRL) Rapid Research Letters published by Wiley-VCH GmbH This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_GB
dc.subjectartificial synapsesen_GB
dc.subjectneuromorphic photonicsen_GB
dc.subjectnonvolatile photonic memoryen_GB
dc.subjectphase-change materialsen_GB
dc.titleArtificial biphasic synapses based on nonvolatile phase‐change photonic memory cellsen_GB
dc.typeArticleen_GB
dc.date.available2022-07-27T08:48:20Z
dc.identifier.issn1862-6254
exeter.article-numberARTN 2100487
dc.descriptionThis is the final version. Available from Wiley via the DOI in this record.en_GB
dc.descriptionData Availability Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.en_GB
dc.identifier.eissn1862-6270
dc.identifier.journalphysica status solidi (RRL) - Rapid Research Lettersen_GB
dc.relation.ispartofphysica status solidi (RRL) - Rapid Research Letters
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2022-04-01
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-04-27
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-07-27T08:45:57Z
refterms.versionFCDVoR
refterms.dateFOA2022-07-27T08:48:21Z
refterms.panelBen_GB
refterms.dateFirstOnline2022-04-27


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors. physica status solidi (RRL) Rapid Research Letters published by Wiley-VCH GmbH

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's licence is described as © 2022 The Authors. physica status solidi (RRL) Rapid Research Letters published by Wiley-VCH GmbH This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.