Show simple item record

dc.contributor.authorYan, Y
dc.contributor.authorZhang, B
dc.contributor.authorPáez Chávez, J
dc.contributor.authorLiu, Y
dc.date.accessioned2022-08-25T12:42:05Z
dc.date.issued2022-07-04
dc.date.updated2022-08-25T10:33:59Z
dc.description.abstractCircular fold is one of the biggest barriers for resisting endoscopic robots moving in the small intestine. Overcoming such a resistance force for progression during endoscopic procedure may significantly improve diagnostic efficiency. This paper studies the locomotion of a vibro-impact capsule robot self-propelled on a small intestine substrate when encounters various types of circular folds. A new capsule-fold model is developed to understand capsule-fold interaction and determine the optimum control parameters (the frequency and amplitude of excitation) for a successful crossing motion. Extensive bifurcation analyses show that the geometry and mechanical properties of the circular folds do not have a significant influence on capsule's bifurcation patterns but affect its progression in terms of fold crossing. To this end, numerical studies using path-following techniques implemented via the software COCO are performed. In this way, parameter-dependent families of periodic solutions of the capsule-fold model are studied, and critical points are detected to allow to develop control strategies for the capsule motion, in particular in order to cross certain types of circular folds by suitably varying its control parameters.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.format.extent106696-
dc.identifier.citationVol. 114, article 106696en_GB
dc.identifier.doihttps://doi.org/10.1016/j.cnsns.2022.106696
dc.identifier.grantnumberEP/V047868/1en_GB
dc.identifier.grantnumber11872147en_GB
dc.identifier.grantnumber12072068en_GB
dc.identifier.urihttp://hdl.handle.net/10871/130517
dc.identifierORCID: 0000-0003-3867-5137 (Liu, Yang)
dc.identifierScopusID: 55199382800 (Liu, Yang)
dc.identifierResearcherID: ABD-4124-2021 | K-1976-2015 (Liu, Yang)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).en_GB
dc.subjectVibro-impacten_GB
dc.subjectPiecewise-smooth dynamical systemen_GB
dc.subjectSelf-propulsionen_GB
dc.subjectCapsule roboten_GB
dc.subjectIntestinal resistanceen_GB
dc.titleOptimising the locomotion of a vibro-impact capsule robot self-propelling in the small intestineen_GB
dc.typeArticleen_GB
dc.date.available2022-08-25T12:42:05Z
dc.identifier.issn1007-5704
exeter.article-number106696
dc.descriptionThis is the final version. Available on open access from Elsevier via the DOI in this recorden_GB
dc.descriptionData accessibility: The numerical data sets generated and analysed during the present study are available from the corresponding author on reasonable request.en_GB
dc.identifier.eissn1878-7274
dc.identifier.journalCommunications in Nonlinear Science and Numerical Simulationen_GB
dc.relation.ispartofCommunications in Nonlinear Science and Numerical Simulation, 114
dc.rights.urihttps://creativecommons.org/ licenses/by/4.0/en_GB
dcterms.dateAccepted2022-06-30
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-07-04
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-08-25T12:39:51Z
refterms.versionFCDVoR
refterms.dateFOA2022-08-25T12:42:09Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
Except where otherwise noted, this item's licence is described as © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).