Show simple item record

dc.contributor.authorSkelland, C
dc.date.accessioned2022-08-25T15:10:24Z
dc.date.issued2022-08-22
dc.date.updated2022-08-25T11:49:40Z
dc.description.abstractPermanent magnetic materials are of fundamental importance to the modern world, utilised in fields as broad as computers, cars, and MRI machines. Their importance is set to increase as the world move towards sustainable energy and away from fossil fuels. A seamless switch requires an increase in magnet production, and an improvement in performance. Rare-earth reduced permanent magnets are considered a solution to these two problems. This thesis investigates the impact of chemical and morphological changes on the phase stability of rare-earth reduced hard permanent magnets. New methodologies for investigating the position preference of atomic substitutions and dopants have been applied to the RT12 (R = Rare-Earth, T = Transition metal) phase group. This work demonstrates that substitution of the transition metal for titanium in NdFe12, SmFe12, and SmCo12, decreases the cohesive energy, and therefore increases the stability of the structure up to 8Ti at.%. Through analysis of substitution positions it is demonstrated this is tied to a structural effect, derived from a switch in the symmetry of preferential substitution positions. To gauge the manufacturing feasibility of one of these phases, computational investigations of the melting temperature of NdFe12 at various pressures were performed using a Solid Liquid coexistence methodology applied in Molecular Dynamics. Pair potentials used for this work were generated by a genetic algorithm potential fitting methodology, which has application beyond the RT12 phase group. Finally, a new methodology for understanding grain morphology is presented, which takes into consideration the shape, surfaces, and interfaces of cyrstalline grain structures. This methodology is tested on the FePt L10 structure, which is able to produce stable magnetic grains at nanometer sizes, due to it’s magnetic anisotropy of Ha = 6-10 MJ/m . This work shows that at grain sizes between 3-9nm, the morphology of the grains is dominated by surface energy, and will result in structures with {111} planes as their primary faces. This result has implications for the design of next generation hard drives.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.identifier.grantnumberEP/P015409/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/130532
dc.language.isoenen_GB
dc.publisherUniversity of Exeteren_GB
dc.subjectMaterial Scienceen_GB
dc.subjectCrystalsen_GB
dc.subjectMagnetsen_GB
dc.subjectMagnetismen_GB
dc.subjectMorphologyen_GB
dc.subjectCrystal Grainsen_GB
dc.subjectGranular Structuresen_GB
dc.subjectNd2Fe14Ben_GB
dc.subjectNd2Fe12en_GB
dc.subjectElectric Carsen_GB
dc.subjectNanoengineeringen_GB
dc.subjectMolecular Dynamicsen_GB
dc.subjectLAMMPSen_GB
dc.subjectGULPen_GB
dc.subjectRT12en_GB
dc.subjectSmCo12en_GB
dc.subjectSmFe12en_GB
dc.subjectNew Magnetic Structuresen_GB
dc.subjectPermanent Magnet Motorsen_GB
dc.subjectPhase-Stabilityen_GB
dc.subjectDopantsen_GB
dc.subjectNdFe11Tien_GB
dc.subjectNdFe12-xTixen_GB
dc.subjectTitanium Substitutionen_GB
dc.subjectHigh Information Density Recording Mediaen_GB
dc.subjectHard Disksen_GB
dc.subjectSuperparamagnetic Limiten_GB
dc.subjectNanometer Size Grainsen_GB
dc.subjectBoltzmann Distributionen_GB
dc.subjectBoltzmann Factorsen_GB
dc.subjectCascading Probabilitiesen_GB
dc.subjectProbability Comparisonen_GB
dc.subjectManufacturingen_GB
dc.subjectNPT Ensembleen_GB
dc.subjectNVT Ensembleen_GB
dc.subjectPython Packageen_GB
dc.subjectMaterial Science Toolkiten_GB
dc.subjectPolycrystalsen_GB
dc.subjectPolycrystalline Structuresen_GB
dc.subject0912 Materials Engineeringen_GB
dc.subject030307 Theory and Design of Materialsen_GB
dc.subjectHigh Performance Magnetsen_GB
dc.subjectHigh Information Density Hard Drivesen_GB
dc.subjectHard Drivesen_GB
dc.subjectPermanent Magnetic Recordingen_GB
dc.subjectPermanent Magnetsen_GB
dc.subjectStabilising Crystalsen_GB
dc.subjectGrain Boundariesen_GB
dc.subjectSurface Energyen_GB
dc.subjectGrain Shapesen_GB
dc.subjectEnergy Driven Grain Modelsen_GB
dc.subjectToolkiten_GB
dc.titleImpact of Chemical and Morphological Changes on the Phase Stability of Magnetic Materialsen_GB
dc.typeThesis or dissertationen_GB
dc.date.available2022-08-25T15:10:24Z
dc.contributor.advisorHrkac, Gino
dc.contributor.advisorHicken, Robert
dc.publisher.departmentCollege of Engineering, Mathematics, and Physical Sciences
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dc.type.degreetitlePhD in Engineering
dc.type.qualificationlevelDoctoral
dc.type.qualificationnameDoctoral Thesis
rioxxterms.versionNAen_GB
rioxxterms.licenseref.startdate2022-08-22
rioxxterms.typeThesisen_GB
refterms.dateFOA2022-08-25T15:13:51Z


Files in this item

This item appears in the following Collection(s)

Show simple item record