Behavioural specialization and learning in social networks
dc.contributor.author | Leimar, O | |
dc.contributor.author | Dall, SRX | |
dc.contributor.author | Houston, AI | |
dc.contributor.author | McNamara, JM | |
dc.date.accessioned | 2022-09-08T14:06:45Z | |
dc.date.issued | 2022-08-10 | |
dc.date.updated | 2022-09-08T13:23:21Z | |
dc.description.abstract | Interactions in social groups can promote behavioural specialization. One way this can happen is when individuals engage in activities with two behavioural options and learn which option to choose. We analyse interactions in groups where individuals learn from playing games with two actions and negatively frequency-dependent payoffs, such as producer-scrounger, caller-satellite, or hawk-dove games. Group members are placed in social networks, characterized by the group size and the number of neighbours to interact with, ranging from just a few neighbours to interactions between all group members. The networks we analyse include ring lattices and the much-studied small-world networks. By implementing two basic reinforcement-learning approaches, action-value learning and actor-critic learning, in different games, we find that individuals often show behavioural specialization. Specialization develops more rapidly when there are few neighbours in a network and when learning rates are high. There can be learned specialization also with many neighbours, but we show that, for action-value learning, behavioural consistency over time is higher with a smaller number of neighbours. We conclude that frequency-dependent competition for resources is a main driver of specialization. We discuss our theoretical results in relation to experimental and field observations of behavioural specialization in social situations. | en_GB |
dc.description.sponsorship | Swedish Research Council | en_GB |
dc.identifier.citation | Vol. 289(1980), article 20220954 | en_GB |
dc.identifier.doi | https://doi.org/10.1098/rspb.2022.0954 | |
dc.identifier.grantnumber | 2018-03772 | en_GB |
dc.identifier.uri | http://hdl.handle.net/10871/130752 | |
dc.identifier | ORCID: 0000-0001-9873-6507 (Dall, Sasha RX) | |
dc.language.iso | en | en_GB |
dc.publisher | Royal Society | en_GB |
dc.relation.url | https://www.ncbi.nlm.nih.gov/pubmed/35946152 | en_GB |
dc.relation.url | https://github.com/oleimar/behavspec | en_GB |
dc.rights | © 2022 The Authors. Open access. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. | en_GB |
dc.subject | animal personality | en_GB |
dc.subject | behavioural consistency | en_GB |
dc.subject | game theory | en_GB |
dc.subject | reinforcement learning | en_GB |
dc.title | Behavioural specialization and learning in social networks | en_GB |
dc.type | Article | en_GB |
dc.date.available | 2022-09-08T14:06:45Z | |
dc.identifier.issn | 0962-8452 | |
exeter.place-of-publication | England | |
dc.description | This is the final version. Available on open access from the Royal Society via the DOI in this record | en_GB |
dc.description | Data accessibility: C++ source code for the individual-based simulations is available at GitHub, together with instructions for compilation on a Linux operating system: https://github.com/oleimar/behavspec. Electronic supplementary material is available online [46]. | en_GB |
dc.identifier.eissn | 1471-2954 | |
dc.identifier.journal | Proceedings of the Royal Society B: Biological Sciences | en_GB |
dc.relation.ispartof | Proc Biol Sci, 289(1980) | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_GB |
dcterms.dateAccepted | 2022-07-14 | |
dc.rights.license | CC BY | |
rioxxterms.version | VoR | en_GB |
rioxxterms.licenseref.startdate | 2022-08-10 | |
rioxxterms.type | Journal Article/Review | en_GB |
refterms.dateFCD | 2022-09-08T14:05:00Z | |
refterms.versionFCD | VoR | |
refterms.dateFOA | 2022-09-08T14:06:57Z | |
refterms.panel | A | en_GB |
refterms.dateFirstOnline | 2022-08-10 |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's licence is described as © 2022 The Authors. Open access.
Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.