Show simple item record

dc.contributor.authorWang, G
dc.contributor.authorMa, D
dc.contributor.authorLiu, C
dc.contributor.authorLiu, Y
dc.date.accessioned2022-09-26T08:58:23Z
dc.date.issued2022-09-23
dc.date.updated2022-09-24T06:44:17Z
dc.description.abstractA comprehensive dashpot model with hysteresis damping factors that can provide a convenient calculation approach for the elastoplastic impact behavior in multibody systems is studied in this paper. At the beginning of contact, the nonlinear hysteresis damping factor in the elastic phase is derived by approximately solving a nonlinear vibration system. When impact happens at a relatively high speed with a large load, elastoplastic deformation is inevitable, and Hertz contact stiffness cannot represent the actual contact stiffness. In order to describe the contact stiffness in the elastoplastic or plastic phase correctly, a static elastoplastic contact model is adopted to calculate the contact stiffness by approximately linearizing the relationship between load and deformation. When the contact comes into the elastoplastic phase, the impact behavior can be treated as a linear vibration system, and the linear hysteresis damping factor can be obtained from this linear system. The energy dissipation in different contact phases can be described by a nonlinear and a linear hysteresis damping factors. Such a nonlinear hysteresis damping factor can make up for the deficiency of the static elastoplastic contact model when describing the energy dissipation in the elastic contact phase. Simulation results show that the proposed dashpot model is more harmonious with the static elastoplastic contact model compared to the existing dashpot models. A slider-crank mechanism with a clearance joint and a Hopkinson incident bar are exemplified in the present work by using experimental data to validate the effectiveness of the proposed dashpot model.en_GB
dc.description.sponsorshipRoyal Societyen_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.format.extent109785-109785
dc.identifier.citationVol. 185, article 109785en_GB
dc.identifier.doihttps://doi.org/10.1016/j.ymssp.2022.109785
dc.identifier.grantnumberIEC/NSFC/201059en_GB
dc.identifier.grantnumber11932001en_GB
dc.identifier.grantnumber12172004en_GB
dc.identifier.grantnumber12111530108en_GB
dc.identifier.grantnumber51975449en_GB
dc.identifier.urihttp://hdl.handle.net/10871/130966
dc.identifierORCID: 0000-0003-3867-5137 (Liu, Yang)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights.embargoreasonUnder embargo until 23 September 2023 in compliance with publisher policyen_GB
dc.rights© 2022. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dc.subjectElastoplastic deformationen_GB
dc.subjectHysteresis damping factoren_GB
dc.subjectContact stiffnessen_GB
dc.subjectVibration systemen_GB
dc.titleDevelopment of a compliant dashpot model with nonlinear and linear behaviors for the contact of multibody systemsen_GB
dc.typeArticleen_GB
dc.date.available2022-09-26T08:58:23Z
dc.identifier.issn0888-3270
exeter.article-number109785
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record en_GB
dc.descriptionData availability: The authors do not have permission to share data.
dc.identifier.eissn1096-1216
dc.identifier.journalMechanical Systems and Signal Processingen_GB
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/ en_GB
dcterms.dateAccepted2022-09-10
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2022-09-23
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-09-26T08:52:17Z
refterms.versionFCDAM
refterms.panelBen_GB
refterms.dateFirstOnline2022-09-23


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  
Except where otherwise noted, this item's licence is described as © 2022. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/