Show simple item record

dc.contributor.authorChen, Y
dc.contributor.authorHan, L
dc.contributor.authorOla, O
dc.contributor.authorLiu, G
dc.contributor.authorWang, N
dc.contributor.authorSaadi, Z
dc.contributor.authorNeves, AIS
dc.contributor.authorTabari, RS
dc.contributor.authorThummavichai, K
dc.contributor.authorKhalil, AME
dc.contributor.authorXia, Y
dc.contributor.authorSun, S
dc.contributor.authorZhu, Y
dc.date.accessioned2022-10-13T10:42:19Z
dc.date.issued2022-10-07
dc.date.updated2022-10-13T09:58:15Z
dc.description.abstractUltralight three-dimensional (3D) architectured silicon carbide (SiC) nanowire sponges with integrated properties of recoverable compressibility, outstanding high-temperature thermal and chemical stability, and fire-retardance have been actively pursued in recent years. However, efficient construction of SiC nanowire sponges with well-controlled overall shapes and distribution of SiC nanowires remains challenging. Herein, by coupling the electrospinning technique and carbothermal reduction process, we have developed a new fabrication process for highly porous and free-standing 3D SiC nanowire (SiCNW) sponges with closely attached nanowires through thermal treatment of stacked electrospun PAN/SiO2 nanofibre membranes. The resulting SiCNW sponges possess ultralow density (∼29 mg cm−3), excellent compressive recoverability from large compressive deformation (up to 40% strain), and fatigue resistance, which endow them with excellent piezoresistive sensing capability under a variety of complex conditions. Furthermore, the sponges display superb thermal insulation (thermal conductivity of 24 mW m−1K−1) and fire-retardance. We believe that the present process provides technical clues for the development of other multifunctional ceramic sponges, and that further development of these ultralight multifunctional ceramic sponges offers potential for the design of advanced components for application in harsh engineering environments.en_GB
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)en_GB
dc.identifier.doihttps://doi.org/10.1111/jace.18823
dc.identifier.grantnumberEP/P003435/1en_GB
dc.identifier.urihttp://hdl.handle.net/10871/131249
dc.identifierORCID: 0000-0003-3659-5643 (Zhu, Yanqiu)
dc.identifierScopusID: 55613813700 (Zhu, Yanqiu)
dc.language.isoenen_GB
dc.publisherWileyen_GB
dc.rights.embargoreasonUnder embargo until 7 October 2023 in compliance with publisher policyen_GB
dc.rights© 2022 Wileyen_GB
dc.subjectSiC nanowire spongeen_GB
dc.subjectelectrospinningen_GB
dc.subjectcarbothermal reductionen_GB
dc.subjectpiezoresistive sensoren_GB
dc.subjectthermal insulationen_GB
dc.titleMultifunctional ultralight, recoverable, piezoresistive, and super thermal insulating SiC nanowire spongesen_GB
dc.typeArticleen_GB
dc.date.available2022-10-13T10:42:19Z
dc.identifier.issn0002-7820
dc.descriptionThis is the author accepted manuscript. The final version is available from Wiley via the DOI in this recorden_GB
dc.identifier.eissn1551-2916
dc.identifier.journalJournal of the American Ceramic Societyen_GB
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2022-10-07
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-10-13T10:40:06Z
refterms.versionFCDAM
refterms.panelBen_GB
refterms.dateFirstOnline2022-10-07


Files in this item

This item appears in the following Collection(s)

Show simple item record