Show simple item record

dc.contributor.authorTang, Y
dc.contributor.authorLiu, F
dc.contributor.authorLiu, W
dc.contributor.authorMo, S
dc.contributor.authorLi, X
dc.contributor.authorYang, D
dc.contributor.authorLiu, Y
dc.contributor.authorBao, S-J
dc.date.accessioned2022-10-31T09:32:31Z
dc.date.issued2022-10-17
dc.date.updated2022-10-30T08:46:58Z
dc.description.abstractHydrogen evolution reaction (HER) electrocatalysts capable of long-term operation under high current densities are key to the industrialization of water-splitting technology. Although numerous efforts have been devoted to expose active sites sufficiently while increasing the intrinsic catalytic activity, effects of non-kinetic factors on catalytic efficiency have not yet been comprehensively investigated. Herein, multifunctional carbon-armored nickel nanoparticles (NC@NiNPs) were fabricated using an in-situ polymer encapsulation method for use as a HER electocatalyst. NC@NiNPs exhibited low overpotential (74 mV at 10 mA cm-2), low Tafel slope (85.49 mV dec-1) and excellent stability (over 260 h at 1400 mA cm-2). Surprisingly, although the intrinsic activity of NC@NiNPs was lower than that of commercial 20 % Pt/C, NC@NiNPs provided markedly greater current density than 20 % Pt/C as the operating voltage was increased. This result implied that non-kinetic factors influenced the HER process, prompting this investigation to identify these unknown factors.en_GB
dc.description.sponsorshipChongqing Key Laboratory of Green Aviation energy and power, Chongqing, Chinaen_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipVenture & Innovation Support Program for Chongqing Overseas Returneesen_GB
dc.description.sponsorshipChongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devicesen_GB
dc.description.sponsorshipChongqing Key Laboratory for Advanced Materials and Technologies, Chongqing Doctoral Research and Innovation Projecten_GB
dc.format.extent122081-
dc.identifier.citationVol. 321, article 122081en_GB
dc.identifier.doihttps://doi.org/10.1016/j.apcatb.2022.122081
dc.identifier.grantnumber401135en_GB
dc.identifier.grantnumber21972111en_GB
dc.identifier.grantnumber22272131en_GB
dc.identifier.grantnumbercx2019073en_GB
dc.identifier.grantnumberCYB21106en_GB
dc.identifier.urihttp://hdl.handle.net/10871/131505
dc.identifierORCID: 0000-0003-4450-4617 (Li, Xiaohong)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights.embargoreasonUnder embargo until 17 October 2023 in compliance with publisher policyen_GB
dc.rights© 2022 Elsevier B.V. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dc.subjectHydrogen Evolution Reactionen_GB
dc.subjectMultifunctional carbonen_GB
dc.subjectElectrocatalysten_GB
dc.subjectSuperhydrophilicen_GB
dc.subjectUltrahigh-current densityen_GB
dc.titleMultifunctional carbon-armored Ni electrocatalyst for hydrogen evolution under high current density in alkaline electrolyte solutionen_GB
dc.typeArticleen_GB
dc.date.available2022-10-31T09:32:31Z
dc.identifier.issn0926-3373
exeter.article-number122081
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recorden_GB
dc.descriptionData Availability: Data will be made available on request.en_GB
dc.identifier.journalApplied Catalysis B Environmentalen_GB
dc.relation.ispartofApplied Catalysis B Environmental, 321
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dcterms.dateAccepted2022-10-14
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2022-10-17
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-10-31T09:27:46Z
refterms.versionFCDAM
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 Elsevier B.V. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  
Except where otherwise noted, this item's licence is described as © 2022 Elsevier B.V. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/