Show simple item record

dc.contributor.authorZhang, F
dc.contributor.authorLuo, C
dc.contributor.authorXu, J
dc.contributor.authorLuo, Y
dc.contributor.authorZheng, F
dc.date.accessioned2022-11-04T10:18:05Z
dc.date.issued2022-07-20
dc.date.updated2022-11-03T21:30:29Z
dc.description.abstractAutomatic modulation recognition (AMR) detects the modulation scheme of the received signals for further signal processing without needing prior information, and provides the essential function when such information is missing. Recent breakthroughs in deep learning (DL) have laid the foundation for developing high-performance DL-AMR approaches for communications systems. Comparing with traditional modulation detection methods, DL-AMR approaches have achieved promising performance including high recognition accuracy and low false alarms due to the strong feature extraction and classification abilities of deep neural networks. Despite the promising potential, DL-AMR approaches also bring concerns to complexity and explainability, which affect the practical deployment in wireless communications systems. This paper aims to present a review of the current DL-AMR research, with a focus on appropriate DL models and benchmark datasets. We further provide comprehensive experiments to compare the state of the art models for single-input-single-output (SISO) systems from both accuracy and complexity perspectives, and propose to apply DL-AMR in the new multiple-input-multiple-output (MIMO) scenario with precoding. Finally, existing challenges and possible future research directions are discussed.en_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipNational Key R&D Program of Chinaen_GB
dc.format.extent103650-
dc.identifier.citationVol. 129, article 103650en_GB
dc.identifier.doihttps://doi.org/10.1016/j.dsp.2022.103650
dc.identifier.grantnumber61871096en_GB
dc.identifier.grantnumber2018YFB2101300en_GB
dc.identifier.urihttp://hdl.handle.net/10871/131623
dc.identifierORCID: 0000-0002-9860-2901 (Luo, Chunbo)
dc.language.isoenen_GB
dc.publisherElsevieren_GB
dc.rights.embargoreasonUnder embargo until 20 July 2023 in compliance with publisher policyen_GB
dc.rights© 2022 Elsevier Inc. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dc.subjectAutomatic modulation recognitionen_GB
dc.subjectDeep learningen_GB
dc.subjectNeural networksen_GB
dc.subjectModulationen_GB
dc.titleDeep Learning Based Automatic Modulation Recognition: Models, Datasets, and Challengesen_GB
dc.typeArticleen_GB
dc.date.available2022-11-04T10:18:05Z
dc.identifier.issn1051-2004
exeter.article-number103650
dc.descriptionThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recorden_GB
dc.identifier.journalDigital Signal Processingen_GB
dc.relation.ispartofDigital Signal Processing, 129
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/  en_GB
dcterms.dateAccepted2022-01-09
dcterms.dateSubmitted2021-05-01
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2022-07-20
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-11-03T21:30:50Z
refterms.versionFCDAM
refterms.dateFOA2023-07-19T23:00:00Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 Elsevier Inc. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/  
Except where otherwise noted, this item's licence is described as © 2022 Elsevier Inc. This version is made available under the CC-BY-NC-ND 4.0 license: https://creativecommons.org/licenses/by-nc-nd/4.0/