Show simple item record

dc.contributor.authorMurray‐Tortarolo, G
dc.contributor.authorPoulter, B
dc.contributor.authorVargas, R
dc.contributor.authorHayes, D
dc.contributor.authorMichalak, AM
dc.contributor.authorWilliams, C
dc.contributor.authorWindham‐Myers, L
dc.contributor.authorWang, JA
dc.contributor.authorWickland, KP
dc.contributor.authorButman, D
dc.contributor.authorTian, H
dc.contributor.authorSitch, S
dc.contributor.authorFriedlingstein, P
dc.contributor.authorO’Sullivan, M
dc.contributor.authorBriggs, P
dc.contributor.authorArora, V
dc.contributor.authorLombardozzi, D
dc.contributor.authorJain, AK
dc.contributor.authorYuan, W
dc.contributor.authorSéférian, R
dc.contributor.authorNabel, J
dc.contributor.authorWiltshire, A
dc.contributor.authorArneth, A
dc.contributor.authorLienert, S
dc.contributor.authorZaehle, S
dc.contributor.authorBastrikov, V
dc.contributor.authorGoll, D
dc.contributor.authorVuichard, N
dc.contributor.authorWalker, A
dc.contributor.authorKato, E
dc.contributor.authorYue, X
dc.contributor.authorZhang, Z
dc.contributor.authorChaterjee, A
dc.contributor.authorKurz, W
dc.date.accessioned2022-11-07T09:13:30Z
dc.date.issued2022-09-01
dc.date.updated2022-11-04T11:04:33Z
dc.description.abstractContinental North America has been found to be a carbon (C) sink over recent decades by multiple studies employing a variety of estimation approaches. However, several key questions and uncertainties remain with these assessments. Here we used results from an ensemble of 19 state-of-the-art dynamic global vegetation models from the TRENDYv9 project to improve these estimates and study the drivers of its interannual variability. Our results show that North America has been a C sink with a magnitude of 0.37 ± 0.38 (mean and one standard deviation) PgC year−1 for the period 2000–2019 (0.31 and 0.44 PgC year−1 in each decade); split into 0.18 ± 0.12 PgC year−1 in Canada (0.15 and 0.20), 0.16 ± 0.17 in the United States (0.14 and 0.17), 0.02 ± 0.05 PgC year−1 in Mexico (0.02 and 0.02) and 0.01 ± 0.02 in Central America and the Caribbean (0.01 and 0.01). About 57% of the new C assimilated by terrestrial ecosystems is allocated into vegetation, 30% into soils, and 13% into litter. Losses of C due to fire account for 41% of the interannual variability of the mean net biome productivity for all North America in the model ensemble. Finally, we show that drought years (e.g., 2002) have the potential to shift the region to a small net C source in the simulations (−0.02 ± 0.46 PgC year−1). Our results highlight the importance of identifying the major drivers of the interannual variability of the continental-scale land C cycle along with the spatial distribution of local sink-source dynamics.en_GB
dc.description.sponsorshipUniversidad Nacional Autónoma de Méxicoen_GB
dc.description.sponsorshipNational Science Foundation (NSF)en_GB
dc.description.sponsorshipNASAen_GB
dc.identifier.citationVol. 127(9), article e2022JG006904en_GB
dc.identifier.doihttps://doi.org/10.1029/2022jg006904
dc.identifier.grantnumberDGAPA PAPIIT IA-200722en_GB
dc.identifier.grantnumber1903722en_GB
dc.identifier.urihttp://hdl.handle.net/10871/131665
dc.identifierORCID: 0000-0003-1821-8561 (Sitch, Stephen)
dc.identifierScopusID: 6603113016 (Sitch, Stephen)
dc.identifierResearcherID: F-8034-2015 (Sitch, Stephen)
dc.identifierORCID: 0000-0003-3309-4739 (Friedlingstein, Pierre)
dc.identifierScopusID: 6602135031 (Friedlingstein, Pierre)
dc.language.isoenen_GB
dc.publisherAmerican Geophysical Union (AGU) / Wileyen_GB
dc.relation.urlhttps://blogs.exeter.ac.uk/trendy/en_GB
dc.relation.urlhttps://doi.org/10.5281/zenodo.7004433en_GB
dc.rights© 2022. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.en_GB
dc.titleA Process‐Model Perspective on Recent Changes in the Carbon Cycle of North Americaen_GB
dc.typeArticleen_GB
dc.date.available2022-11-07T09:13:30Z
dc.identifier.issn2169-8953
exeter.article-numberARTN e2022JG006904
dc.descriptionThis is the final version. Available on open access from the American Geophysical Union via the DOI in this recorden_GB
dc.descriptionData Availability Statement: All data employed in this work is freely available at: https://blogs.exeter.ac.uk/trendy/ or at https://doi.org/10.5281/zenodo.7004433.en_GB
dc.identifier.eissn2169-8961
dc.identifier.journalJournal of Geophysical Research Biogeosciencesen_GB
dc.relation.ispartofJournal of Geophysical Research Biogeosciences, 127(9)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_GB
dcterms.dateAccepted2022-08-16
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-09-01
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-11-07T09:11:17Z
refterms.versionFCDVoR
refterms.dateFOA2022-11-07T09:13:35Z
refterms.panelCen_GB
refterms.dateFirstOnline2022-09-01


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022. The Authors.
This is an open access article under
the terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and
distribution in any medium, provided the
original work is properly cited, the use is
non-commercial and no modifications or
adaptations are made.
Except where otherwise noted, this item's licence is described as © 2022. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.