Show simple item record

dc.contributor.authorBrückerhoff-Plückelmann, F
dc.contributor.authorBente, I
dc.contributor.authorWendland, D
dc.contributor.authorFeldmann, J
dc.contributor.authorWright, CD
dc.contributor.authorBhaskaran, H
dc.contributor.authorPernice, W
dc.date.accessioned2022-11-17T10:27:39Z
dc.date.issued2022-10-28
dc.date.updated2022-11-16T17:23:04Z
dc.description.abstractIntegrated neuromorphic photonic circuits aim to power complex artificial neural networks (ANNs) in an energy and time efficient way by exploiting the large bandwidth and the low loss of photonic structures. However, scaling photonic circuits to match the requirements of modern ANNs still remains challenging. In this perspective, we give an overview over the usual sizes of matrices processed in ANNs and compare them with the capability of existing photonic matrix processors. To address shortcomings of existing architectures, we propose a time multiplexed matrix processing scheme which virtually increases the size of a physical photonic crossbar array without requiring any additional electrical post-processing. We investigate the underlying process of time multiplexed incoherent optical accumulation and achieve accumulation accuracy of 98.9% with 1 ns pulses. Assuming state of the art active components and a reasonable crossbar array size, this processor architecture would enable matrix vector multiplications with 16,000 × 64 matrices all optically on an estimated area of 51.2 mm2, while performing more than 110 trillion multiply and accumulate operations per second.en_GB
dc.description.sponsorshipDeutsche Forschungsgemeinschaften_GB
dc.description.sponsorshipEuropean Commissionen_GB
dc.description.sponsorshipBundesministerium für Bildung und Forschungen_GB
dc.identifier.citationPublished online 28 october 2022en_GB
dc.identifier.doihttps://doi.org/10.1515/nanoph-2022-0441
dc.identifier.grantnumberCRC 1459en_GB
dc.identifier.grantnumber101017237en_GB
dc.identifier.grantnumber101046878en_GB
dc.identifier.grantnumber724707en_GB
dc.identifier.grantnumber899598en_GB
dc.identifier.grantnumberHYPHONEen_GB
dc.identifier.urihttp://hdl.handle.net/10871/131794
dc.identifierORCID: 0000-0003-4087-7467 (Wright, C David)
dc.language.isoenen_GB
dc.publisherDe Gruyteren_GB
dc.rights© 2022 the author(s), published by De Gruyter, Berlin/Boston. Open access. This work is licensed under the Creative Commons Attribution 4.0 International License.en_GB
dc.subjectmatrix vector multiplicationen_GB
dc.subjectphotonic computingen_GB
dc.subjecttime-multiplexingen_GB
dc.titleA large scale photonic matrix processor enabled by charge accumulationen_GB
dc.typeArticleen_GB
dc.date.available2022-11-17T10:27:39Z
dc.identifier.issn2192-8606
dc.descriptionThis is the final version. Available on open access from De Gruyter via the DOI in this recorden_GB
dc.identifier.eissn2192-8614
dc.identifier.journalNanophotonicsen_GB
dc.relation.ispartofNanophotonics, 0(0)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2022-10-17
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-10-28
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-11-17T10:23:06Z
refterms.versionFCDVoR
refterms.dateFOA2022-11-17T10:27:42Z
refterms.panelBen_GB
refterms.dateFirstOnline2022-10-28


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 the author(s), published by De Gruyter, Berlin/Boston. Open access. This work is licensed under the Creative Commons Attribution 4.0 International License.
Except where otherwise noted, this item's licence is described as © 2022 the author(s), published by De Gruyter, Berlin/Boston. Open access. This work is licensed under the Creative Commons Attribution 4.0 International License.