Show simple item record

dc.contributor.authorMeredith, MP
dc.contributor.authorInall, ME
dc.contributor.authorBrearley, JA
dc.contributor.authorEhmen, T
dc.contributor.authorSheen, K
dc.contributor.authorMunday, D
dc.contributor.authorCook, A
dc.contributor.authorRetallick, K
dc.contributor.authorVan Landeghem, K
dc.contributor.authorGerrish, L
dc.contributor.authorAnnett, A
dc.contributor.authorCarvalho, F
dc.contributor.authorJones, R
dc.contributor.authorNaveira Garabato, AC
dc.contributor.authorBull, CYS
dc.contributor.authorWallis, BJ
dc.contributor.authorHogg, AE
dc.contributor.authorScourse, J
dc.date.accessioned2022-12-02T13:02:27Z
dc.date.issued2022-11-23
dc.date.updated2022-12-02T11:51:57Z
dc.description.abstractOcean mixing around Antarctica exerts key influences on glacier dynamics and ice shelf retreats, sea ice, and marine productivity, thus affecting global sea level and climate. The conventional paradigm is that this is dominated by winds, tides, and buoyancy forcing. Direct observations from the Antarctic Peninsula demonstrate that glacier calving triggers internal tsunamis, the breaking of which drives vigorous mixing. Being widespread and frequent, these internal tsunamis are at least comparable to winds, and much more important than tides, in driving regional shelf mixing. They are likely relevant everywhere that marine-terminating glaciers calve, including Greenland and across the Arctic. Calving frequency may change with higher ocean temperatures, suggesting possible shifts to internal tsunamigenesis and mixing in a warming climate.en_GB
dc.description.sponsorshipNatural Environment Research Council (NERC)en_GB
dc.description.sponsorshipCONICYTen_GB
dc.description.sponsorshipEuropean Union Horizon 2020en_GB
dc.description.sponsorshipHarry Elderfield Memorial Scholarshipen_GB
dc.description.sponsorshipEuropean Space Agencyen_GB
dc.description.sponsorshipEuropean Research Council (ERC)en_GB
dc.format.extenteadd0720-
dc.format.mediumPrint-Electronic
dc.identifier.citationVol. 8(47), article eadd0720en_GB
dc.identifier.doihttps://doi.org/10.1126/sciadv.add0720
dc.identifier.grantnumberNE/P003087/1en_GB
dc.identifier.grantnumberNE/P003060/1en_GB
dc.identifier.grantnumber821001en_GB
dc.identifier.grantnumberNE/N018095/1en_GB
dc.identifier.grantnumberNE/V013254/1en_GB
dc.identifier.grantnumberNE/R016038/1en_GB
dc.identifier.grantnumberNE/L003287/1en_GB
dc.identifier.grantnumberNE/L011166/1en_GB
dc.identifier.grantnumber820575en_GB
dc.identifier.grantnumberNE/L002531/1en_GB
dc.identifier.grantnumberNE/P017630/1en_GB
dc.identifier.grantnumberNE/S007458/1en_GB
dc.identifier.grantnumber4000132186/20/I-EFen_GB
dc.identifier.grantnumber4000135062/21/I-NBen_GB
dc.identifier.grantnumber724416en_GB
dc.identifier.urihttp://hdl.handle.net/10871/131927
dc.identifierORCID: 0000-0003-2658-8730 (Scourse, James)
dc.identifierScopusID: 6701724255 (Scourse, James)
dc.language.isoenen_GB
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_GB
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pubmed/36417533en_GB
dc.rights© 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Open access. Distributed under a Creative Commons Attribution License 4.0 (CC BY).en_GB
dc.titleInternal tsunamigenesis and ocean mixing driven by glacier calving in Antarcticaen_GB
dc.typeArticleen_GB
dc.date.available2022-12-02T13:02:27Z
dc.identifier.issn2375-2548
exeter.place-of-publicationUnited States
dc.descriptionThis is the final version. Available on open access from AAAS via the DOI in this recorden_GB
dc.descriptionData and materials availability: Cruise data used here are archived with the British Oceanographic Data Centre and are available at www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/d9633a6c-d27e-30b4-e053-6c86abc07104 (DOI: 10.5285/d9633a6c-d27e-30b4-e053-6c86abc07104). The multibeam bathymetry data are available at 5-m gridded resolution at https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01511. ETOPO1 bathymetry is available at https://catalog.data.gov/dataset/etopo1-1-arc-minute-global-relief-model (DOI: 0.7289/V5C8276M). The Reference Elevation Model of Antarctica is available at www.pgc.umn.edu/data/rema/. Previously published datasets used here are cited accordingly in the main text. Sentinel-1 SAR data are openly available through the ESA-EC Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home). MITgcm code is available at https://zenodo.org/record/3967889#.Yhjimi-l0ws (DOI: 10.5281/zenodo.3967889). CODAS is available at https://currents.soest.hawaii.edu/docs/adcp_doc/codas_setup/index.html. All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.en_GB
dc.identifier.eissn2375-2548
dc.identifier.journalScience Advancesen_GB
dc.relation.ispartofSci Adv, 8(47)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_GB
dcterms.dateAccepted2022-09-29
rioxxterms.versionVoRen_GB
rioxxterms.licenseref.startdate2022-11-23
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2022-12-02T12:55:33Z
refterms.versionFCDVoR
refterms.dateFOA2022-12-02T13:02:28Z
refterms.panelBen_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Open access. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
Except where otherwise noted, this item's licence is described as © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Open access. Distributed under a Creative Commons Attribution License 4.0 (CC BY).