Show simple item record

dc.contributor.authorHumayun, M
dc.contributor.authorUllah, H
dc.contributor.authorHu, C
dc.contributor.authorTian, M
dc.contributor.authorPi, W
dc.contributor.authorZhang, Y
dc.contributor.authorLuo, W
dc.contributor.authorWang, C
dc.date.accessioned2023-03-20T13:53:17Z
dc.date.issued2023-03-09
dc.date.updated2023-03-20T12:43:36Z
dc.description.abstractIt is of great significance to improve the photocatalytic performance of g-C3N4 by promoting its surface-active sites and engineering more suitable and stable redox couples. Herein, first of all, we fabricated porous g-C3N4 (PCN) via the sulfuric acid-assisted chemical exfoliation method. Then, we modified the porous g-C3N4 with iron(III) meso-tetraphenylporphine chloride (FeTPPCl) porphyrin via the wet-chemical method. The as-fabricated FeTPPCl-PCN composite revealed exceptional performance for photocatalytic water reduction by evolving 253.36 and 8301 μmol g-1 of H2 after visible and UV-visible irradiation for 4 h, respectively. The performance of the FeTPPCl-PCN composite is ∼2.45 and 4.75-fold improved compared to that of the pristine PCN photocatalyst under the same experimental conditions. The calculated quantum efficiencies of the FeTPPCl-PCN composite for H2 evolution at 365 and 420 nm wavelengths are 4.81 and 2.68%, respectively. This exceptional H2 evolution performance is because of improved surface-active sites due to porous architecture and remarkably improved charge carrier separation via the well-aligned type-II band heterostructure. Besides, we also reported the correct theoretical model of our catalyst through density functional theory (DFT) simulations. It is found that the hydrogen evolution reaction (HER) activity of FeTPPCl-PCN arises from the electron transfer from PCN via Cl atom(s) to Fe of the FeTPPCl, which forms a strong electrostatic interaction, leading to a decreased local work function on the surface of the catalyst. We suggest that the resultant composite would be a perfect model for the design and fabrication of high-efficiency heterostructure photocatalysts for energy applications.en_GB
dc.description.sponsorshipMinistry of Science and Technology of Chinaen_GB
dc.description.sponsorshipNational Natural Science Foundation of Chinaen_GB
dc.description.sponsorshipNational Key R&D Program of Chinaen_GB
dc.description.sponsorshipBintuan Science and Technology Programen_GB
dc.description.sponsorshipKey Research and Development Program of Hubeien_GB
dc.description.sponsorshipMinistry of Science and Technology Foreign Youth Talent Program Fundingen_GB
dc.format.mediumPrint-Electronic
dc.identifier.citationPublished online 9 March 2023en_GB
dc.identifier.doihttps://doi.org/10.1021/acsami.3c01683
dc.identifier.grantnumber2018YFA0702100en_GB
dc.identifier.grantnumber11874169en_GB
dc.identifier.grantnumber51972129en_GB
dc.identifier.grantnumber52272202en_GB
dc.identifier.grantnumber2017YFE0120500en_GB
dc.identifier.grantnumber2020DB002en_GB
dc.identifier.grantnumber2022DB009en_GB
dc.identifier.grantnumber2020BAB079en_GB
dc.identifier.grantnumberQN2022154003Len_GB
dc.identifier.urihttp://hdl.handle.net/10871/132727
dc.identifierORCID: 0000-0001-9290-0265 (Ullah, Habib)
dc.identifierScopusID: 57531625900 | 6701392760 (Ullah, Habib)
dc.identifierResearcherID: S-9557-2019 (Ullah, Habib)
dc.identifierORCID: 0000-0001-6983-6146 (Tian, Mi)
dc.identifierScopusID: 57189728817 (Tian, Mi)
dc.identifierResearcherID: D-1901-2015 (Tian, Mi)
dc.language.isoenen_GB
dc.publisherAmerican Chemical Societyen_GB
dc.relation.urlhttps://www.ncbi.nlm.nih.gov/pubmed/36892209en_GB
dc.rights.embargoreasonUnder embargo until 9 March 2024 in compliance with publisher policyen_GB
dc.rights© 2023 American Chemical Societyen_GB
dc.subjectChemical exfoliationen_GB
dc.subjectDensity functional theoryen_GB
dc.subjectFeTPPCl porphyrinen_GB
dc.subjectPorous g-C3N4en_GB
dc.subjectType-II heterostructureen_GB
dc.subjectWater reductionen_GB
dc.titleEnhanced Photocatalytic H2 Evolution Performance of the Type-II FeTPPCl/Porous g-C3N4 Heterojunction: Experimental and Density Functional Theory Studiesen_GB
dc.typeArticleen_GB
dc.date.available2023-03-20T13:53:17Z
dc.identifier.issn1944-8244
exeter.place-of-publicationUnited States
dc.descriptionThis is the author accepted manuscript. The final version is available from the American Chemical Society via the DOI in this recorden_GB
dc.identifier.eissn1944-8252
dc.identifier.journalACS Applied Materials and Interfacesen_GB
dc.relation.ispartofACS Appl Mater Interfaces
dc.rights.urihttp://www.rioxx.net/licenses/all-rights-reserveden_GB
dcterms.dateAccepted2023-02-27
rioxxterms.versionAMen_GB
rioxxterms.licenseref.startdate2023-03-09
rioxxterms.typeJournal Article/Reviewen_GB
refterms.dateFCD2023-03-20T13:47:39Z
refterms.versionFCDAM
refterms.dateFOA2024-03-09T00:00:00Z
refterms.panelBen_GB
refterms.dateFirstOnline2023-03-09


Files in this item

This item appears in the following Collection(s)

Show simple item record