dc.contributor.author | Liefooghe, A | |
dc.contributor.author | Verel, S | |
dc.contributor.author | Chugh, T | |
dc.contributor.author | Fieldsend, J | |
dc.contributor.author | Allmendinger, R | |
dc.contributor.author | Miettinen, K | |
dc.date.accessioned | 2023-04-14T13:33:24Z | |
dc.date.issued | 2023-03-09 | |
dc.date.updated | 2023-04-14T13:03:05Z | |
dc.description.abstract | We consider the application of machine learning techniques
to gain insights into the effect of problem features on algorithm performance, and to automate the task of algorithm selection for distancebased multi- and many-objective optimisation problems. This is the most
extensive benchmark study of such problems to date. The problem features can be set directly by the problem generator, and include e.g. the
number of variables, objectives, local fronts, and disconnected Pareto
sets. Using 945 problem configurations (leading to 28 350 instances) of
varying complexity, we find that the problem features and the available optimisation budget (i) affect the considered algorithms (NSGA-II,
IBEA, MOEA/D, and random search) in different ways and that (ii) it is
possible to recommend a relevant algorithm based on problem features. | en_GB |
dc.format.extent | 260-273 | |
dc.identifier.citation | In: Evolutionary Multi-Criterion Optimization. EMO 2023. Lecture Notes in Computer Science, vol. 13970, pp. 260-273 | en_GB |
dc.identifier.doi | https://doi.org/10.1007/978-3-031-27250-9_19 | |
dc.identifier.uri | http://hdl.handle.net/10871/132908 | |
dc.identifier | ORCID: 0000-0001-5123-8148 (Chugh, Tinkle) | |
dc.identifier | ORCID: 0000-0002-0683-2583 (Fieldsend, Jonathan) | |
dc.language.iso | en | en_GB |
dc.publisher | Springer | en_GB |
dc.relation.url | https://github.com/tichugh/Feature_Analysis_DBMOPP_EMO_2023 | en_GB |
dc.relation.url | https://doi.org/10.5281/zenodo.7155803 | en_GB |
dc.rights.embargoreason | Under embargo until 9 March 2024 in compliance with publisher policy | en_GB |
dc.rights | © 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG | en_GB |
dc.subject | Multi/many-objective distance problems | en_GB |
dc.subject | Feature-based performance prediction | en_GB |
dc.subject | Automated algorithm selection | en_GB |
dc.title | Feature-based benchmarking of distance-based multi/many-objective optimisation problems: A machine learning perspective | en_GB |
dc.type | Book chapter | en_GB |
dc.date.available | 2023-04-14T13:33:24Z | |
dc.identifier.isbn | 9783031272493 | |
dc.description | This is the author accepted manuscript. The final version is available from Springer via the DOI in this record | en_GB |
dc.description | The code is available at: https://github.com/
tichugh/Feature_Analysis_DBMOPP_EMO_2023, and the corresponding dataset
at: https://doi.org/10.5281/zenodo.7155803. | en_GB |
dc.rights.uri | http://www.rioxx.net/licenses/all-rights-reserved | en_GB |
dcterms.dateAccepted | 2023 | |
rioxxterms.version | AM | en_GB |
rioxxterms.licenseref.startdate | 2023-03-09 | |
rioxxterms.type | Book chapter | en_GB |
refterms.dateFCD | 2023-04-14T13:24:30Z | |
refterms.versionFCD | AM | |
refterms.dateFOA | 2024-03-09T00:00:00Z | |
refterms.dateFirstOnline | 2023-03-09 | |